Simple flue gas for overstochiometric O2-fuel ratios
Extends from Common.MixtureGasNasa (Medium model of a mixture of ideal gases based on NASA source).
Name | Description |
---|---|
Inherited | |
ThermodynamicState | Thermodynamic state variables |
data={Common.SingleGasesData.N2,Common.SingleGasesData.O2,Common.SingleGasesData.H2O,Common.SingleGasesData.CO2} | Data records of ideal gas substances |
excludeEnthalpyOfFormation=true | If true, enthalpy of formation Hf is not included in specific enthalpy h |
referenceChoice=ReferenceEnthalpy.ZeroAt0K | Choice of reference enthalpy |
h_offset=0.0 | User defined offset for reference enthalpy, if referenceChoice = UserDefined |
MMX=data[:].MM | Molar masses of components |
methodForThermalConductivity=1 | |
BaseProperties | Base properties (p, d, T, h, u, R, MM, X, and Xi of NASA mixture gas |
setState_pTX | Return thermodynamic state as function of p, T and composition X |
setState_phX | Return thermodynamic state as function of p, h and composition X |
setState_psX | Return thermodynamic state as function of p, s and composition X |
setState_dTX | Return thermodynamic state as function of d, T and composition X |
setSmoothState | Return thermodynamic state so that it smoothly approximates: if x > 0 then state_a else state_b |
pressure | Return pressure of ideal gas |
temperature | Return temperature of ideal gas |
density | Return density of ideal gas |
specificEnthalpy | Return specific enthalpy |
specificInternalEnergy | Return specific internal energy |
specificEntropy | Return specific entropy |
specificGibbsEnergy | Return specific Gibbs energy |
specificHelmholtzEnergy | Return specific Helmholtz energy |
h_TX | Return specific enthalpy |
h_TX_der | Return specific enthalpy derivative |
gasConstant | Return gasConstant |
specificHeatCapacityCp | Return specific heat capacity at constant pressure |
specificHeatCapacityCv | Return specific heat capacity at constant volume from temperature and gas data |
MixEntropy | Return mixing entropy of ideal gases / R |
s_TX | Return temperature dependent part of the entropy, expects full entropy vector |
isentropicExponent | Return isentropic exponent |
velocityOfSound | Return velocity of sound |
isentropicEnthalpyApproximation | Approximate method of calculating h_is from upstream properties and downstream pressure |
isentropicEnthalpy | Return isentropic enthalpy |
gasMixtureViscosity | Return viscosities of gas mixtures at low pressures (Wilke method) |
dynamicViscosity | Return mixture dynamic viscosity |
mixtureViscosityChung | Return the viscosity of gas mixtures without access to component viscosities (Chung, et. al. rules) |
lowPressureThermalConductivity | Return thermal conductivities of low-pressure gas mixtures (Mason and Saxena Modification) |
thermalConductivity | Return thermal conductivity for low pressure gas mixtures |
isobaricExpansionCoefficient | Return isobaric expansion coefficient beta |
isothermalCompressibility | Return isothermal compressibility factor |
density_derp_T | Return density derivative by pressure at constant temperature |
density_derT_p | Return density derivative by temperature at constant pressure |
density_derX | Return density derivative by mass fraction |
molarMass | Return molar mass of mixture |
T_hX | Return temperature from specific enthalpy and mass fraction |
T_psX | Return temperature from pressure, specific entropy and mass fraction |
fluidConstants={Common.FluidData.N2,Common.FluidData.O2,Common.FluidData.H2O,Common.FluidData.CO2} | Constant data for the fluid |
moleToMassFractions | Return mass fractions X from mole fractions |
massToMoleFractions | Return mole fractions from mass fractions X |
ThermoStates=Modelica.Media.Interfaces.Choices.IndependentVariables.pTX | Enumeration type for independent variables |
mediumName="FlueGasLambda1plus" | Name of the medium |
substanceNames={"Nitrogen","Oxygen","Water","Carbondioxide"} | Names of the mixture substances. Set substanceNames={mediumName} if only one substance. |
extraPropertiesNames=fill("", 0) | Names of the additional (extra) transported properties. Set extraPropertiesNames=fill("",0) if unused |
singleState=false | = true, if u and d are not a function of pressure |
reducedX=false | = true if medium contains the equation sum(X) = 1.0; set reducedX=true if only one substance (see docu for details) |
fixedX=false | = true if medium contains the equation X = reference_X |
reference_p=101325 | Reference pressure of Medium: default 1 atmosphere |
reference_T=298.15 | Reference temperature of Medium: default 25 deg Celsius |
reference_X={0.768,0.232,0.0,0.0} | Default mass fractions of medium |
p_default=101325 | Default value for pressure of medium (for initialization) |
T_default=Modelica.SIunits.Conversions.from_degC(20) | Default value for temperature of medium (for initialization) |
h_default=specificEnthalpy_pTX(p_default, T_default, X_default) | Default value for specific enthalpy of medium (for initialization) |
X_default=reference_X | Default value for mass fractions of medium (for initialization) |
C_default=fill(0, nC) | Default value for trace substances of medium (for initialization) |
nS=size(substanceNames, 1) | Number of substances |
nX=nS | Number of mass fractions |
nXi=if fixedX then 0 else if reducedX then nS - 1 else nS | Number of structurally independent mass fractions (see docu for details) |
nC=size(extraPropertiesNames, 1) | Number of extra (outside of standard mass-balance) transported properties |
C_nominal=1.0e-6*ones(nC) | Default for the nominal values for the extra properties |
FluidConstants | Critical, triple, molecular and other standard data of fluid |
prandtlNumber | Return the Prandtl number |
heatCapacity_cp | Alias for deprecated name |
heatCapacity_cv | Alias for deprecated name |
beta | Alias for isobaricExpansionCoefficient for user convenience |
kappa | Alias of isothermalCompressibility for user convenience |
density_derp_h | Return density derivative w.r.t. pressure at const specific enthalpy |
density_derh_p | Return density derivative w.r.t. specific enthalpy at constant pressure |
specificEnthalpy_pTX | Return specific enthalpy from p, T, and X or Xi |
specificEntropy_pTX | Return specific enthalpy from p, T, and X or Xi |
density_pTX | Return density from p, T, and X or Xi |
temperature_phX | Return temperature from p, h, and X or Xi |
density_phX | Return density from p, h, and X or Xi |
temperature_psX | Return temperature from p,s, and X or Xi |
density_psX | Return density from p, s, and X or Xi |
specificEnthalpy_psX | Return specific enthalpy from p, s, and X or Xi |
MassFlowRate | Type for mass flow rate with medium specific attributes |
AbsolutePressure | Type for absolute pressure with medium specific attributes |
Density | Type for density with medium specific attributes |
DynamicViscosity | Type for dynamic viscosity with medium specific attributes |
EnthalpyFlowRate | Type for enthalpy flow rate with medium specific attributes |
MassFraction | Type for mass fraction with medium specific attributes |
MoleFraction | Type for mole fraction with medium specific attributes |
MolarMass | Type for molar mass with medium specific attributes |
MolarVolume | Type for molar volume with medium specific attributes |
IsentropicExponent | Type for isentropic exponent with medium specific attributes |
SpecificEnergy | Type for specific energy with medium specific attributes |
SpecificInternalEnergy | Type for specific internal energy with medium specific attributes |
SpecificEnthalpy | Type for specific enthalpy with medium specific attributes |
SpecificEntropy | Type for specific entropy with medium specific attributes |
SpecificHeatCapacity | Type for specific heat capacity with medium specific attributes |
SurfaceTension | Type for surface tension with medium specific attributes |
Temperature | Type for temperature with medium specific attributes |
ThermalConductivity | Type for thermal conductivity with medium specific attributes |
PrandtlNumber | Type for Prandtl number with medium specific attributes |
VelocityOfSound | Type for velocity of sound with medium specific attributes |
ExtraProperty | Type for unspecified, mass-specific property transported by flow |
CumulativeExtraProperty | Type for conserved integral of unspecified, mass specific property |
ExtraPropertyFlowRate | Type for flow rate of unspecified, mass-specific property |
IsobaricExpansionCoefficient | Type for isobaric expansion coefficient with medium specific attributes |
DipoleMoment | Type for dipole moment with medium specific attributes |
DerDensityByPressure | Type for partial derivative of density with respect to pressure with medium specific attributes |
DerDensityByEnthalpy | Type for partial derivative of density with respect to enthalpy with medium specific attributes |
DerEnthalpyByPressure | Type for partial derivative of enthalpy with respect to pressure with medium specific attributes |
DerDensityByTemperature | Type for partial derivative of density with respect to temperature with medium specific attributes |
DerTemperatureByPressure | Type for partial derivative of temperature with respect to pressure with medium specific attributes |
SaturationProperties | Saturation properties of two phase medium |
FluidLimits | Validity limits for fluid model |
FixedPhase | Phase of the fluid: 1 for 1-phase, 2 for two-phase, 0 for not known, e.g., interactive use |
Basic | The most basic version of a record used in several degrees of detail |
IdealGas | The ideal gas version of a record used in several degrees of detail |
TwoPhase | The two phase fluid version of a record used in several degrees of detail |