ReferenceAir.Air_pT: Detailed dry air model (130 ... 2000 K) explicit in p and T
The package Air_pT can be used as any other medium model (see User's Guide of Media Library for further information).
Extends from Modelica.Icons.MaterialProperty (Icon for property classes), Modelica.Media.Air.ReferenceAir.Air_Base (Properties of dry air calculated using the equation of state by Lemmon et. al.).
| Name | Description |
|---|---|
| Inherited | |
| ph_explicit=false | True if explicit in pressure and specific enthalpy |
| dT_explicit=false | True if explicit in density and temperature |
| pT_explicit=true | True if explicit in pressure and temperature |
| Thermodynamic state | |
| Base properties of air | |
| Computes density as a function of pressure and specific enthalpy | |
| Computes temperature as a function of pressure and specific enthalpy | |
| Compute temperature from pressure and specific enthalpy | |
| Computes density as a function of pressure and specific enthalpy | |
| Computes pressure as a function of density and temperature | |
| Computes specific enthalpy as a function of density and temperature | |
| Computes specific enthalpy as a function of pressure and temperature | |
| Computes specific enthalpy as a function of pressure and temperature | |
| Computes density as a function of pressure and temperature | |
| Return dynamic viscosity as a function of the thermodynamic state record | |
| Thermal conductivity of air | |
| Return pressure of ideal gas | |
| Return temperature of ideal gas | |
| Return density of ideal gas | |
| Return specific enthalpy | |
| Return specific internal energy | |
| Return specific Gibbs energy | |
| Return specific Helmholtz energy | |
| Specific entropy of air | |
| Specific heat capacity at constant pressure of air | |
| Specific heat capacity at constant volume of air | |
| Return isentropic exponent | |
| Isothermal compressibility of air | |
| Isobaric expansion coefficient of air | |
| Return velocity of sound as a function of the thermodynamic state record | |
| Density derivative by specific enthalpy | |
| Density derivative by pressure | |
| Return thermodynamic state of air as function of d and T | |
| Return thermodynamic state of air as function of p and h | |
| Return thermodynamic state of air as function of p and s | |
| Return thermodynamic state of air as function of p and T | |
| Return thermodynamic state so that it smoothly approximates: if x > 0 then state_a else state_b | |
| Return the molar mass of the medium | |
| Return thermodynamic state from p and T | |
| Return thermodynamic state from p and h | |
| Return thermodynamic state from p and s | |
| Return thermodynamic state from d and T | |
| ThermoStates=Modelica.Media.Interfaces.Choices.IndependentVariables.pT | Enumeration type for independent variables |
| mediumName="Air" | Name of the medium |
| substanceNames={"air"} | Names of the mixture substances. Set substanceNames={mediumName} if only one substance. |
| extraPropertiesNames=fill("", 0) | Names of the additional (extra) transported properties. Set extraPropertiesNames=fill("",0) if unused |
| singleState=false | = true, if u and d are not a function of pressure |
| reducedX=true | = true if medium contains the equation sum(X) = 1.0; set reducedX=true if only one substance (see docu for details) |
| fixedX=true | = true if medium contains the equation X = reference_X |
| reference_p=101325 | Reference pressure of Medium: default 1 atmosphere |
| reference_T=298.15 | Reference temperature of Medium: default 25 deg Celsius |
| reference_X=fill(1/nX, nX) | Default mass fractions of medium |
| p_default=101325 | Default value for pressure of medium (for initialization) |
| T_default=Modelica.Units.Conversions.from_degC(20) | Default value for temperature of medium (for initialization) |
| h_default=specificEnthalpy_pTX(p_default, T_default, X_default) | Default value for specific enthalpy of medium (for initialization) |
| X_default=reference_X | Default value for mass fractions of medium (for initialization) |
| C_default=fill(0, nC) | Default value for trace substances of medium (for initialization) |
| nS=size(substanceNames, 1) | Number of substances |
| nX=nS | Number of mass fractions |
| nXi=if fixedX then 0 else if reducedX then nS - 1 else nS | Number of structurally independent mass fractions (see docu for details) |
| nC=size(extraPropertiesNames, 1) | Number of extra (outside of standard mass-balance) transported properties |
| C_nominal=1.0e-6*ones(nC) | Default for the nominal values for the extra properties |
| Critical, triple, molecular and other standard data of fluid | |
| Return the Prandtl number | |
| Alias for deprecated name | |
| Alias for deprecated name | |
| Alias for isobaricExpansionCoefficient for user convenience | |
| Alias of isothermalCompressibility for user convenience | |
| Return density derivative w.r.t. pressure at const temperature | |
| Return density derivative w.r.t. temperature at constant pressure | |
| Return density derivative w.r.t. mass fraction | |
| Return specific enthalpy from p, T, and X or Xi | |
| Return specific enthalpy from p, T, and X or Xi | |
| Return density from p, T, and X or Xi | |
| Return temperature from p, h, and X or Xi | |
| Return density from p, h, and X or Xi | |
| Return temperature from p,s, and X or Xi | |
| Return density from p, s, and X or Xi | |
| Return specific enthalpy from p, s, and X or Xi | |
| Type for mass flow rate with medium specific attributes | |
| Type for absolute pressure with medium specific attributes | |
| Type for density with medium specific attributes | |
| Type for dynamic viscosity with medium specific attributes | |
| Type for enthalpy flow rate with medium specific attributes | |
| Type for mass fraction with medium specific attributes | |
| Type for mole fraction with medium specific attributes | |
| Type for molar mass with medium specific attributes | |
| Type for molar volume with medium specific attributes | |
| Type for isentropic exponent with medium specific attributes | |
| Type for specific energy with medium specific attributes | |
| Type for specific internal energy with medium specific attributes | |
| Type for specific enthalpy with medium specific attributes | |
| Type for specific entropy with medium specific attributes | |
| Type for specific heat capacity with medium specific attributes | |
| Type for surface tension with medium specific attributes | |
| Type for temperature with medium specific attributes | |
| Type for thermal conductivity with medium specific attributes | |
| Type for Prandtl number with medium specific attributes | |
| Type for velocity of sound with medium specific attributes | |
| Type for unspecified, mass-specific property transported by flow | |
| Type for conserved integral of unspecified, mass specific property | |
| Type for flow rate of unspecified, mass-specific property | |
| Type for isobaric expansion coefficient with medium specific attributes | |
| Type for dipole moment with medium specific attributes | |
| Type for partial derivative of density with respect to pressure with medium specific attributes | |
| Type for partial derivative of density with respect to enthalpy with medium specific attributes | |
| Type for partial derivative of enthalpy with respect to pressure with medium specific attributes | |
| Type for partial derivative of density with respect to temperature with medium specific attributes | |
| Type for partial derivative of temperature with respect to pressure with medium specific attributes | |
| Saturation properties of two phase medium | |
| Validity limits for fluid model | |
| Phase of the fluid: 1 for 1-phase, 2 for two-phase, 0 for not known, e.g., interactive use | |
| The most basic version of a record used in several degrees of detail | |
| The ideal gas version of a record used in several degrees of detail | |
| The two phase fluid version of a record used in several degrees of detail | |