.Modelica.Blocks.Continuous.Internal.Filter.roots.bandStop

Information

The goal is to implement the filter in the following form:

// complex conjugate poles:
der(x1) = a*x1 - b*x2 + ku*u;
der(x2) = b*x1 + a*x2;
     y  = k1*x1 + k2*x2 + u;

          ku = (a^2 + b^2)/b
          k1 = 2*a/ku
          k2 = (c0 + a^2 - b^2)/(b*ku)

This representation has the following transfer function:

// complex conjugate poles
    s*x2 =  a*x2 + b*x1
    s*x1 = -b*x2 + a*x1 + ku*u
  or
    (s-a)*x2               = b*x1  ->  x2 = b/(s-a)*x1
    (s + b^2/(s-a) - a)*x1 = ku*u  ->  (s(s-a) + b^2 - a*(s-a))*x1  = ku*(s-a)*u
                                   ->  (s^2 - 2*a*s + a^2 + b^2)*x1 = ku*(s-a)*u
  or
    x1 = ku*(s-a)/(s^2 - 2*a*s + a^2 + b^2)*u
    x2 = b/(s-a)*ku*(s-a)/(s^2 - 2*a*s + a^2 + b^2)*u
       = b*ku/(s^2 - 2*a*s + a^2 + b^2)*u
    y  = k1*x1 + k2*x2 + u
       = (k1*ku*(s-a) + k2*b*ku + s^2 - 2*a*s + a^2 + b^2) / (s^2 - 2*a*s + a^2 + b^2)*u
       = (s^2 + (k1*ku-2*a)*s + k2*b*ku - k1*ku*a + a^2 + b^2) / (s^2 - 2*a*s + a^2 + b^2)*u
       = (s^2 + c0 + a^2 - b^2 - 2*a^2 + a^2 + b^2) / (s^2 - 2*a*s + a^2 + b^2)*u
       = (s^2 + c0) / (s^2 - 2*a*s + a^2 + b^2)*u

  comparing coefficients with
    y = (s^2 + c0) / (s^2 + c1*s + c0)*u  ->  a = -c1/2
                                              b = sqrt(c0 - a^2)

  comparing with eigenvalue representation:
    (s - (a+jb))*(s - (a-jb)) = s^2 -2*a*s + a^2 + b^2
  shows that:
    a: real part of eigenvalue
    b: imaginary part of eigenvalue

Interface

function bandStop
  extends Modelica.Icons.Function;
  input Real cr_in[:] "Coefficients of real poles of base filter";
  input Real c0_in[:] "Coefficients of s^0 term of base filter if conjugate complex pole";
  input Real c1_in[size(c0_in, 1)] "Coefficients of s^1 term of base filter if conjugate complex pole";
  input SI.Frequency f_min "Band of band stop filter is f_min (A=-3db) .. f_max (A=-3db)";
  input SI.Frequency f_max "Upper band frequency";
  output Real a[size(cr_in, 1) + 2 * size(c0_in, 1)] "Real parts of complex conjugate eigenvalues";
  output Real b[size(cr_in, 1) + 2 * size(c0_in, 1)] "Imaginary parts of complex conjugate eigenvalues";
  output Real ku[size(cr_in, 1) + 2 * size(c0_in, 1)] "Gains of input terms";
  output Real k1[size(cr_in, 1) + 2 * size(c0_in, 1)] "Gains of y = k1*x1 + k2*x";
  output Real k2[size(cr_in, 1) + 2 * size(c0_in, 1)] "Gains of y = k1*x1 + k2*x";
end bandStop;

Generated at 2020-06-05T21:39:08Z by OpenModelica 1.16.0~dev-442-g2e5bc9f