The goal is to implement the filter in the following form:
// real pole:
der(x) = r*x - r*u
y = -x + u
// complex conjugate poles:
der(x1) = a*x1 - b*x2 + ku*u;
der(x2) = b*x1 + a*x2;
y = k1*x1 + k2*x2 + u;
ku = (a^2 + b^2)/b
k1 = 2*a/ku
k2 = (a^2 - b^2) / (b*ku)
= (a^2 - b^2) / (a^2 + b^2)
= (1 - (b/a)^2) / (1 + (b/a)^2)
This representation has the following transfer function:
// real pole:
s*x = r*x - r*u
or
(s-r)*x = -r*u -> x = -r/(s-r)*u
or
y = r/(s-r)*u + (s-r)/(s-r)*u
= (r+s-r)/(s-r)*u
= s/(s-r)*u
// comparing coefficients with
y = s/(s + cr)*u -> r = -cr // r is the real eigenvalue
// complex conjugate poles
s*x2 = a*x2 + b*x1
s*x1 = -b*x2 + a*x1 + ku*u
or
(s-a)*x2 = b*x1 -> x2 = b/(s-a)*x1
(s + b^2/(s-a) - a)*x1 = ku*u -> (s(s-a) + b^2 - a*(s-a))*x1 = ku*(s-a)*u
-> (s^2 - 2*a*s + a^2 + b^2)*x1 = ku*(s-a)*u
or
x1 = ku*(s-a)/(s^2 - 2*a*s + a^2 + b^2)*u
x2 = b/(s-a)*ku*(s-a)/(s^2 - 2*a*s + a^2 + b^2)*u
= b*ku/(s^2 - 2*a*s + a^2 + b^2)*u
y = k1*x1 + k2*x2 + u
= (k1*ku*(s-a) + k2*b*ku + s^2 - 2*a*s + a^2 + b^2) /
(s^2 - 2*a*s + a^2 + b^2)*u
= (s^2 + (k1*ku - 2*a)*s + k2*b*ku - k1*ku*a + a^2 + b^2) /
(s^2 - 2*a*s + a^2 + b^2)*u
= (s^2 + (2*a-2*a)*s + a^2 - b^2 - 2*a^2 + a^2 + b^2) /
(s^2 - 2*a*s + a^2 + b^2)*u
= s^2 / (s^2 - 2*a*s + a^2 + b^2)*u
// comparing coefficients with
y = s^2/(s^2 + c1*s + c0)*u -> a = -c1/2
b = sqrt(c0 - a^2)
// comparing with eigenvalue representation:
(s - (a+jb))*(s - (a-jb)) = s^2 -2*a*s + a^2 + b^2
// shows that:
// a: real part of eigenvalue
// b: imaginary part of eigenvalue
function highPass extends Modelica.Icons.Function; input Real cr_in[:] "Coefficients of real poles of base filter"; input Real c0_in[:] "Coefficients of s^0 term of base filter if conjugate complex pole"; input Real c1_in[size(c0_in, 1)] "Coefficients of s^1 term of base filter if conjugate complex pole"; input SI.Frequency f_cut "Cut-off frequency"; output Real r[size(cr_in, 1)] "Real eigenvalues"; output Real a[size(c0_in, 1)] "Real parts of complex conjugate eigenvalues"; output Real b[size(c0_in, 1)] "Imaginary parts of complex conjugate eigenvalues"; output Real ku[size(c0_in, 1)] "Gains of input terms"; output Real k1[size(c0_in, 1)] "Gains of y = k1*x1 + k2*x + u"; output Real k2[size(c0_in, 1)] "Gains of y = k1*x1 + k2*x + u"; end highPass;