This component defines the quadratic turbulent regime of wall friction: dp = k*m_flow*|m_flow|, where "k" depends on density and the roughness of the pipe and is no longer a function of the Reynolds number. This relationship is only valid for large Reynolds numbers. At Re=4000, a polynomial is constructed that approaches the constant λ (for large Reynolds-numbers) at Re=4000 smoothly and has a derivative at zero mass flow rate that is identical to laminar wall friction.
Name | Description |
---|---|
massFlowRate_dp | Return mass flow rate m_flow as function of pressure loss dp, i.e., m_flow = f(dp), due to wall friction |
pressureLoss_m_flow | Return pressure loss dp as function of mass flow rate m_flow, i.e., dp = f(m_flow), due to wall friction |
massFlowRate_dp_staticHead | Return mass flow rate m_flow as function of pressure loss dp, i.e., m_flow = f(dp), due to wall friction and static head |
pressureLoss_m_flow_staticHead | Return pressure loss dp as function of mass flow rate m_flow, i.e., dp = f(m_flow), due to wall friction and static head |
Internal | Functions to calculate mass flow rate from friction pressure drop and vice versa |