Lapack documentation
Purpose
=======
DGETRF computes an LU factorization of a general M-by-N matrix A
using partial pivoting with row interchanges.
The factorization has the form
A = P * L * U
where P is a permutation matrix, L is lower triangular with unit
diagonal elements (lower trapezoidal if m > n), and U is upper
triangular (upper trapezoidal if m < n).
This is the right-looking Level 3 BLAS version of the algorithm.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the M-by-N matrix to be factored.
On exit, the factors L and U from the factorization
A = P*L*U; the unit diagonal elements of L are not stored.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
IPIV (output) INTEGER array, dimension (min(M,N))
The pivot indices; for 1 <= i <= min(M,N), row i of the
matrix was interchanged with row IPIV(i).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, U(i,i) is exactly zero. The factorization
has been completed, but the factor U is exactly
singular, and division by zero will occur if it is used
to solve a system of equations.
pure function dgetrf
extends Modelica.Icons.Function;
input Real A[:, :] "Square or rectangular matrix";
output Real LU[size(A, 1), size(A, 2)] = A;
output Integer pivots[min(size(A, 1), size(A, 2))] "Pivot vector";
output Integer info "Information";
end dgetrf;
Generated at 2020-06-05T21:39:08Z by OpenModelica 1.16.0~dev-442-g2e5bc9f