(D,B) = Matrices.balance(A);
This function returns a vector D, such that B=inv(diagonal(D))*A*diagonal(D) has a better condition as matrix A, i.e., conditionNumber(B) ≤ conditionNumber(A). The elements of D are multiples of 2 which means that this function does not introduce round-off errors. Balancing attempts to make the norm of each row of B equal to the norm of the respective column.
Balancing is used to minimize roundoff errors induced through large matrix calculations like Taylor-series approximation or computation of eigenvalues.
- A = [1, 10, 1000; 0.01, 0, 10; 0.005, 0.01, 10] - Matrices.norm(A, 1); = 1020.0 - (T,B)=Matrices.balance(A) - T = {256, 16, 0.5} - B = [1, 0.625, 1.953125; 0.16, 0, 0.3125; 2.56, 0.32, 10.0] - Matrices.norm(B, 1); = 12.265625
The Algorithm is taken from
which based on the balance
function from
EISPACK.
function balance extends Modelica.Icons.Function; input Real A[:, size(A, 1)]; output Real D[size(A, 1)] "diagonal(D)=T is transformation matrix, such that B = inv(T)*A*T has smaller condition as A"; output Real B[size(A, 1), size(A, 1)] "Balanced matrix (= inv(diagonal(D))*A*diagonal(D) )"; end balance;