Modelica.Electrical.Analog.Semiconductors

Semiconductor devices such as diode, MOS and bipolar transistor

Information

This package contains semiconductor devices:

Most of the semiconductor devices contain a conditional heat port, which is not active by default. If it is active the loss power is calculated to be used in a thermal net. The heating variants of the semiconductor devices are provided to use the thermal port temperature in the electric calculation. That means that for a true thermal electric interaction the heating device models have to be used.

Extends from Modelica.Icons.Package (Icon for standard packages).

Package Content

Name Description
Modelica.Electrical.Analog.Semiconductors.Diode Diode Simple diode
Modelica.Electrical.Analog.Semiconductors.Diode2 Diode2 Improved diode model
Modelica.Electrical.Analog.Semiconductors.ZDiode ZDiode Zener diode with 3 working areas
Modelica.Electrical.Analog.Semiconductors.PMOS PMOS Simple MOS Transistor
Modelica.Electrical.Analog.Semiconductors.NMOS NMOS Simple MOS Transistor
Modelica.Electrical.Analog.Semiconductors.NPN NPN Simple BJT according to Ebers-Moll
Modelica.Electrical.Analog.Semiconductors.PNP PNP Simple BJT according to Ebers-Moll
Modelica.Electrical.Analog.Semiconductors.HeatingDiode HeatingDiode Simple diode with heating port
Modelica.Electrical.Analog.Semiconductors.HeatingNMOS HeatingNMOS Simple MOS Transistor with heating port
Modelica.Electrical.Analog.Semiconductors.HeatingPMOS HeatingPMOS Simple PMOS Transistor with heating port
Modelica.Electrical.Analog.Semiconductors.HeatingNPN HeatingNPN Simple NPN BJT according to Ebers-Moll with heating port
Modelica.Electrical.Analog.Semiconductors.HeatingPNP HeatingPNP Simple PNP BJT according to Ebers-Moll with heating port
Modelica.Electrical.Analog.Semiconductors.pow pow Just a helper function for x^y in order that a symbolic engine can apply some transformations more easily
Modelica.Electrical.Analog.Semiconductors.powlin powlin Power function (1 - x)^(-y) linearly continued for x > 0 (provided y = const.)
Modelica.Electrical.Analog.Semiconductors.exlin exlin Exponential function linearly continued for x > Maxexp
Modelica.Electrical.Analog.Semiconductors.exlin2 exlin2 Exponential function linearly continued for x < MinExp and x > Maxexp
Modelica.Electrical.Analog.Semiconductors.Thyristor Thyristor Simple Thyristor Model
Modelica.Electrical.Analog.Semiconductors.SimpleTriac SimpleTriac Simple triac, based on Semiconductors.Thyristor model

Modelica.Electrical.Analog.Semiconductors.Diode Modelica.Electrical.Analog.Semiconductors.Diode

Simple diode

Information

The simple diode is a one port. It consists of the diode itself and an parallel ohmic resistance R. The diode formula is:

                v/vt
  i  =  ids ( e      - 1).

If the exponent v/vt reaches the limit maxex, the diode characteristic is linearly continued to avoid overflow.

Please note: In case of useHeatPort=true the temperature dependence of the electrical behavior is not modelled yet. The parameters are not temperature dependent.

Extends from Modelica.Electrical.Analog.Interfaces.OnePort (Component with two electrical pins p and n and current i from p to n), Modelica.Electrical.Analog.Interfaces.ConditionalHeatPort (Partial model to include a conditional HeatPort in order to describe the power loss via a thermal network).

Parameters

NameDescription
IdsSaturation current [A]
VtVoltage equivalent of temperature (kT/qn) [V]
MaxexpMax. exponent for linear continuation
RParallel ohmic resistance [Ohm]
useHeatPort=true, if heatPort is enabled
TFixed device temperature if useHeatPort = false [K]

Connectors

NameDescription
pPositive electrical pin
nNegative electrical pin
heatPortConditional heat port

Modelica.Electrical.Analog.Semiconductors.Diode2 Modelica.Electrical.Analog.Semiconductors.Diode2

Improved diode model

Information

This diode model is an improved version of the simple diode model. It includes a series resistance, parallel conductance, and also models reverse breakdown. The model is divided into three parts:

Temperature dependent behaviour is modelled when useHeatPort=true. In that case, the Vt parameter is ignored, and Vt is computed as k·T/q, where

Extends from Modelica.Electrical.Analog.Interfaces.OnePort (Component with two electrical pins p and n and current i from p to n), Modelica.Electrical.Analog.Interfaces.ConditionalHeatPort (Partial model to include a conditional HeatPort in order to describe the power loss via a thermal network).

Parameters

NameDescription
useHeatPort=true, if heatPort is enabled
TFixed device temperature if useHeatPort = false [K]
VfForward voltage [V]
IdsReverse saturation current [A]
RsOhmic resistance [Ohm]
VtThermal voltage (kT/q), 0.026 at normal conditions (around 20 degC) [V]
NEmission coefficient
BvReverse breakdown voltage [V]
GpParallel conductance for numerical stability [S]

Connectors

NameDescription
pPositive electrical pin
nNegative electrical pin
heatPortConditional heat port

Modelica.Electrical.Analog.Semiconductors.ZDiode Modelica.Electrical.Analog.Semiconductors.ZDiode

Zener diode with 3 working areas

Information

The simple Zener diode is a one port. It consists of the diode itself and an parallel ohmic resistance R. The diode formula is:

                v/Vt                -(v+Bv)/(Nbv*Vt)
  i  =  Ids ( e      - 1) - Ibv ( e                  ).

If the exponent in one of the two branches reaches the limit Maxexp, the diode characteristic is linearly continued to avoid overflow.


The Zener diode model permits (in contrast to the simple diode model) current in reverse direction if the breakdown voltage Bv (also known Zener knee voltage) is exceeded.

The thermal power is calculated by i*v.

Please note: In case of useHeatPort=true the temperature dependence of the electrical behavior is not modelled yet. The parameters are not temperature dependent.

Extends from Modelica.Electrical.Analog.Interfaces.OnePort (Component with two electrical pins p and n and current i from p to n), Modelica.Electrical.Analog.Interfaces.ConditionalHeatPort (Partial model to include a conditional HeatPort in order to describe the power loss via a thermal network).

Parameters

NameDescription
IdsSaturation current [A]
VtVoltage equivalent of temperature (kT/qn) [V]
MaxexpMax. exponent for linear continuation
RParallel ohmic resistance [Ohm]
BvBreakthrough voltage = Zener- or Z-voltage [V]
IbvBreakthrough knee current [A]
NbvBreakthrough emission coefficient
useHeatPort=true, if heatPort is enabled
TFixed device temperature if useHeatPort = false [K]

Connectors

NameDescription
pPositive electrical pin
nNegative electrical pin
heatPortConditional heat port

Modelica.Electrical.Analog.Semiconductors.PMOS Modelica.Electrical.Analog.Semiconductors.PMOS

Simple MOS Transistor

Information

The PMOS model is a simple model of a p-channel metal-oxide semiconductor FET. It differs slightly from the device used in the SPICE simulator. For more details please care for H. Spiro.

The model does not consider capacitances. A high drain-source resistance RDS is included to avoid numerical difficulties.

Please note: In case of useHeatPort=true the temperature dependence of the electrical behavior is not modelled yet. The parameters are not temperature dependent.

References:
Spiro, H.: Simulation integrierter Schaltungen. R. Oldenbourg Verlag Muenchen Wien 1990.

Some typical parameter sets are:

  W       L      Beta        Vt    K2     K5      DW       DL
  m       m      A/V^2       V     -      -       m        m
  50.e-6  8.e-6  0.0085e-3  -0.15  0.41   0.839  -3.8e-6  -4.0e-6
  20.e-6  6.e-6  0.0105e-3  -1.0   0.41   0.839  -2.5e-6  -2.1e-6
  30.e-6  5.e-6  0.0059e-3  -0.3   0.98   1.01    0       -3.9e-6
  30.e-6  5.e-6  0.0152e-3  -0.69  0.104  1.1    -0.8e-6  -0.4e-6
  30.e-6  5.e-6  0.0163e-3  -0.69  0.104  1.1    -0.8e-6  -0.4e-6
  30.e-6  5.e-6  0.0182e-3  -0.69  0.086  1.06   -0.1e-6  -0.6e-6
  20.e-6  6.e-6  0.0074e-3  -1.    0.4    0.59    0        0

Extends from Modelica.Electrical.Analog.Interfaces.ConditionalHeatPort (Partial model to include a conditional HeatPort in order to describe the power loss via a thermal network).

Parameters

NameDescription
WWidth [m]
LLength [m]
BetaTransconductance parameter [A/V2]
VtZero bias threshold voltage [V]
K2Bulk threshold parameter
K5Reduction of pinch-off region
dWNarrowing of channel [m]
dLShortening of channel [m]
RDSDrain-Source-Resistance [Ohm]
useHeatPort=true, if heatPort is enabled
TFixed device temperature if useHeatPort = false [K]

Connectors

NameDescription
DDrain
GGate
SSource
BBulk
heatPortConditional heat port

Modelica.Electrical.Analog.Semiconductors.NMOS Modelica.Electrical.Analog.Semiconductors.NMOS

Simple MOS Transistor

Information

The NMOS model is a simple model of a n-channel metal-oxide semiconductor FET. It differs slightly from the device used in the SPICE simulator. For more details please care for H. Spiro.

The model does not consider capacitances. A high drain-source resistance RDS is included to avoid numerical difficulties.

Please note: In case of useHeatPort=true the temperature dependence of the electrical behavior is not modelled yet. The parameters are not temperature dependent.

  W       L      Beta         Vt      K2     K5       DW       DL
  m       m      A/V^2        V       -      -        m        m
  12.e-6  4.e-6  0.062e-3    -4.5     0.24   0.61    -1.2e-6  -0.9e-6      depletion
  60.e-6  3.e-6  0.048e-3     0.1     0.08   0.68    -1.2e-6  -0.9e-6      enhancement
  12.e-6  4.e-6  0.0625e-3   -0.8     0.21   0.78    -1.2e-6  -0.9e-6      zero
  50.e-6  8.e-6  0.0299e-3    0.24    1.144  0.7311  -5.4e-6  -4.e-6
  20.e-6  6.e-6  0.041e-3     0.8     1.144  0.7311  -2.5e-6  -1.5e-6
  30.e-6  9.e-6  0.025e-3    -4.0     0.861  0.878   -3.4e-6  -1.74e-6
  30.e-6  5.e-6  0.031e-3     0.6     1.5    0.72     0       -3.9e-6
  50.e-6  6.e-6  0.0414e-3   -3.8     0.34   0.8     -1.6e-6  -2.e-6       depletion
  50.e-6  5.e-6  0.03e-3      0.37    0.23   0.86    -1.6e-6  -2.e-6       enhancement
  50.e-6  6.e-6  0.038e-3    -0.9     0.23   0.707   -1.6e-6  -2.e-6       zero
  20.e-6  4.e-6  0.06776e-3   0.5409  0.065  0.71    -0.8e-6  -0.2e-6
  20.e-6  4.e-6  0.06505e-3   0.6209  0.065  0.71    -0.8e-6  -0.2e-6
  20.e-6  4.e-6  0.05365e-3   0.6909  0.03   0.8     -0.3e-6  -0.2e-6
  20.e-6  4.e-6  0.05365e-3   0.4909  0.03   0.8     -0.3e-6  -0.2e-6
  12.e-6  4.e-6  0.023e-3    -4.5     0.29   0.6      0        0           depletion
  60.e-6  3.e-6  0.022e-3     0.1     0.11   0.65     0        0           enhancement
  12.e-6  4.e-6  0.038e-3    -0.8     0.33   0.6      0        0           zero
  20.e-6  6.e-6  0.022e-3     0.8     1      0.66     0        0
References:
Spiro, H.: Simulation integrierter Schaltungen. R. Oldenbourg Verlag Muenchen Wien 1990.

Extends from Modelica.Electrical.Analog.Interfaces.ConditionalHeatPort (Partial model to include a conditional HeatPort in order to describe the power loss via a thermal network).

Parameters

NameDescription
WWidth [m]
LLength [m]
BetaTransconductance parameter [A/V2]
VtZero bias threshold voltage [V]
K2Bulk threshold parameter
K5Reduction of pinch-off region
dWNarrowing of channel [m]
dLShortening of channel [m]
RDSDrain-Source-Resistance [Ohm]
useHeatPort=true, if heatPort is enabled
TFixed device temperature if useHeatPort = false [K]

Connectors

NameDescription
DDrain
GGate
SSource
BBulk
heatPortConditional heat port

Modelica.Electrical.Analog.Semiconductors.NPN Modelica.Electrical.Analog.Semiconductors.NPN

Simple BJT according to Ebers-Moll

Information

This model is a simple model of a bipolar NPN junction transistor according to Ebers-Moll.

Please note: In case of useHeatPort=true the temperature dependence of the electrical behavior is not modelled yet. The parameters are not temperature dependent.

A typical parameter set is:

  Bf  Br  Is     Vak  Tauf    Taur  Ccs   Cje     Cjc     Phie  Me   PHic   Mc     Gbc    Gbe    Vt
  -   -   A      V    s       s     F     F       F       V     -    V      -      mS     mS     V
  50  0.1 1e-16  0.02 0.12e-9 5e-9  1e-12 0.4e-12 0.5e-12 0.8   0.4  0.8    0.333  1e-15  1e-15  0.02585
References:
Vlach, J.; Singal, K.: Computer methods for circuit analysis and design. Van Nostrand Reinhold, New York 1983 on page 317 ff.

Extends from Modelica.Electrical.Analog.Interfaces.ConditionalHeatPort (Partial model to include a conditional HeatPort in order to describe the power loss via a thermal network).

Parameters

NameDescription
BfForward beta
BrReverse beta
IsTransport saturation current [A]
VakEarly voltage (inverse), 1/Volt [1/V]
TaufIdeal forward transit time [s]
TaurIdeal reverse transit time [s]
CcsCollector-substrate(ground) cap. [F]
CjeBase-emitter zero bias depletion cap. [F]
CjcBase-coll. zero bias depletion cap. [F]
PhieBase-emitter diffusion voltage [V]
MeBase-emitter gradation exponent
PhicBase-collector diffusion voltage [V]
McBase-collector gradation exponent
GbcBase-collector conductance [S]
GbeBase-emitter conductance [S]
VtVoltage equivalent of temperature [V]
EMinif x < EMin, the exp(x) function is linearized
EMaxif x > EMax, the exp(x) function is linearized
ICInitial value [V]
UICDecision if initial value should be used
useHeatPort=true, if heatPort is enabled
TFixed device temperature if useHeatPort = false [K]

Connectors

NameDescription
heatPortConditional heat port
CCollector
BBase
EEmitter

Modelica.Electrical.Analog.Semiconductors.PNP Modelica.Electrical.Analog.Semiconductors.PNP

Simple BJT according to Ebers-Moll

Information

This model is a simple model of a bipolar PNP junction transistor according to Ebers-Moll.

Please note: In case of useHeatPort=true the temperature dependency of the electrical behavior is not modelled yet. The parameters are not temperature dependent.

A typical parameter set is:

  Bf  Br  Is     Vak  Tauf    Taur  Ccs   Cje     Cjc     Phie  Me   PHic   Mc     Gbc    Gbe    Vt
  -   -   A      V    s       s     F     F       F       V     -    V      -      mS     mS     V
  50  0.1 1e-16  0.02 0.12e-9 5e-9  1e-12 0.4e-12 0.5e-12 0.8   0.4  0.8    0.333  1e-15  1e-15  0.02585
References:
Vlach, J.; Singal, K.: Computer methods for circuit analysis and design. Van Nostrand Reinhold, New York 1983 on page 317 ff.

Extends from Modelica.Electrical.Analog.Interfaces.ConditionalHeatPort (Partial model to include a conditional HeatPort in order to describe the power loss via a thermal network).

Parameters

NameDescription
BfForward beta
BrReverse beta
IsTransport saturation current [A]
VakEarly voltage (inverse), 1/Volt [1/V]
TaufIdeal forward transit time [s]
TaurIdeal reverse transit time [s]
CcsCollector-substrate(ground) cap. [F]
CjeBase-emitter zero bias depletion cap. [F]
CjcBase-coll. zero bias depletion cap. [F]
PhieBase-emitter diffusion voltage [V]
MeBase-emitter gradation exponent
PhicBase-collector diffusion voltage [V]
McBase-collector gradation exponent
GbcBase-collector conductance [S]
GbeBase-emitter conductance [S]
VtVoltage equivalent of temperature [V]
EMinif x < EMin, the exp(x) function is linearized
EMaxif x > EMax, the exp(x) function is linearized
useHeatPort=true, if heatPort is enabled
TFixed device temperature if useHeatPort = false [K]

Connectors

NameDescription
heatPortConditional heat port
CCollector
BBase
EEmitter

Modelica.Electrical.Analog.Semiconductors.HeatingDiode Modelica.Electrical.Analog.Semiconductors.HeatingDiode

Simple diode with heating port

Information

The simple diode is an electrical one port, where a heat port is added, which is defined in the Modelica.Thermal library. It consists of the diode itself and an parallel ohmic resistance R. The diode formula is:

                v/vt_t
  i  =  ids ( e        - 1).

where vt_t depends on the temperature of the heat port:
  vt_t = k*temp/q

If the exponent v/vt_t reaches the limit maxex, the diode characteristic is linearly continued to avoid overflow.
The thermal power is calculated by i*v.

Extends from Modelica.Electrical.Analog.Interfaces.OnePort (Component with two electrical pins p and n and current i from p to n), Modelica.Electrical.Analog.Interfaces.ConditionalHeatPort (Partial model to include a conditional HeatPort in order to describe the power loss via a thermal network).

Parameters

NameDescription
IdsSaturation current [A]
MaxexpMax. exponent for linear continuation
RParallel ohmic resistance [Ohm]
EGActivation energy
NEmission coefficient
TNOMParameter measurement temperature [K]
XTITemperature exponent of saturation current
useHeatPort=true, if heatPort is enabled
TFixed device temperature if useHeatPort = false [K]

Connectors

NameDescription
pPositive electrical pin
nNegative electrical pin
heatPortConditional heat port

Modelica.Electrical.Analog.Semiconductors.HeatingNMOS Modelica.Electrical.Analog.Semiconductors.HeatingNMOS

Simple MOS Transistor with heating port

Information

The NMOS model is a simple model of a n-channel metal-oxide semiconductor FET. It differs slightly from the device used in the SPICE simulator. For more details please care for H. Spiro.
A heating port is added for thermal electric simulation. The heating port is defined in the Modelica.Thermal library.
The model does not consider capacitances. A high drain-source resistance RDS is included to avoid numerical difficulties.

  W       L      Beta         Vt      K2     K5       DW       DL
  m       m      A/V^2        V       -      -        m        m
  12.e-6  4.e-6  0.062e-3    -4.5     0.24   0.61    -1.2e-6  -0.9e-6      depletion
  60.e-6  3.e-6  0.048e-3     0.1     0.08   0.68    -1.2e-6  -0.9e-6      enhancement
  12.e-6  4.e-6  0.0625e-3   -0.8     0.21   0.78    -1.2e-6  -0.9e-6      zero
  50.e-6  8.e-6  0.0299e-3    0.24    1.144  0.7311  -5.4e-6  -4.e-6
  20.e-6  6.e-6  0.041e-3     0.8     1.144  0.7311  -2.5e-6  -1.5e-6
  30.e-6  9.e-6  0.025e-3    -4.0     0.861  0.878   -3.4e-6  -1.74e-6
  30.e-6  5.e-6  0.031e-3     0.6     1.5    0.72     0       -3.9e-6
  50.e-6  6.e-6  0.0414e-3   -3.8     0.34   0.8     -1.6e-6  -2.e-6       depletion
  50.e-6  5.e-6  0.03e-3      0.37    0.23   0.86    -1.6e-6  -2.e-6       enhancement
  50.e-6  6.e-6  0.038e-3    -0.9     0.23   0.707   -1.6e-6  -2.e-6       zero
  20.e-6  4.e-6  0.06776e-3   0.5409  0.065  0.71    -0.8e-6  -0.2e-6
  20.e-6  4.e-6  0.06505e-3   0.6209  0.065  0.71    -0.8e-6  -0.2e-6
  20.e-6  4.e-6  0.05365e-3   0.6909  0.03   0.8     -0.3e-6  -0.2e-6
  20.e-6  4.e-6  0.05365e-3   0.4909  0.03   0.8     -0.3e-6  -0.2e-6
  12.e-6  4.e-6  0.023e-3    -4.5     0.29   0.6      0        0           depletion
  60.e-6  3.e-6  0.022e-3     0.1     0.11   0.65     0        0           enhancement
  12.e-6  4.e-6  0.038e-3    -0.8     0.33   0.6      0        0           zero
  20.e-6  6.e-6  0.022e-3     0.8     1      0.66     0        0

References:

Spiro, H.: Simulation integrierter Schaltungen. R. Oldenbourg Verlag Muenchen Wien 1990.

Extends from Modelica.Electrical.Analog.Interfaces.ConditionalHeatPort (Partial model to include a conditional HeatPort in order to describe the power loss via a thermal network).

Parameters

NameDescription
WWidth [m]
LLength [m]
BetaTransconductance parameter [A/V2]
VtZero bias threshold voltage [V]
K2Bulk threshold parameter
K5Reduction of pinch-off region
dWNarrowing of channel [m]
dLShortening of channel [m]
RDSDrain-Source-Resistance [Ohm]
TnomParameter measurement temperature [K]
kvtFitting parameter for Vt
kk2Fitting parameter for K2
useHeatPort=true, if heatPort is enabled
TFixed device temperature if useHeatPort = false [K]

Connectors

NameDescription
DDrain
GGate
SSource
BBulk
heatPortConditional heat port

Modelica.Electrical.Analog.Semiconductors.HeatingPMOS Modelica.Electrical.Analog.Semiconductors.HeatingPMOS

Simple PMOS Transistor with heating port

Information

The PMOS model is a simple model of a p-channel metal-oxide semiconductor FET. It differs slightly from the device used in the SPICE simulator. For more details please care for H. Spiro.
A heating port is added for thermal electric simulation. The heating port is defined in the Modelica.Thermal library.
The model does not consider capacitances. A high drain-source resistance RDS is included to avoid numerical difficulties.

References:
Spiro, H.: Simulation integrierter Schaltungen. R. Oldenbourg Verlag Muenchen Wien 1990.

Some typical parameter sets are:

  W       L      Beta        Vt    K2     K5      DW       DL
  m       m      A/V^2       V     -      -       m        m
  50.e-6  8.e-6  0.0085e-3  -0.15  0.41   0.839  -3.8e-6  -4.0e-6
  20.e-6  6.e-6  0.0105e-3  -1.0   0.41   0.839  -2.5e-6  -2.1e-6
  30.e-6  5.e-6  0.0059e-3  -0.3   0.98   1.01    0       -3.9e-6
  30.e-6  5.e-6  0.0152e-3  -0.69  0.104  1.1    -0.8e-6  -0.4e-6
  30.e-6  5.e-6  0.0163e-3  -0.69  0.104  1.1    -0.8e-6  -0.4e-6
  30.e-6  5.e-6  0.0182e-3  -0.69  0.086  1.06   -0.1e-6  -0.6e-6
  20.e-6  6.e-6  0.0074e-3  -1.    0.4    0.59    0        0

Extends from Modelica.Electrical.Analog.Interfaces.ConditionalHeatPort (Partial model to include a conditional HeatPort in order to describe the power loss via a thermal network).

Parameters

NameDescription
WWidth [m]
LLength [m]
BetaTransconductance parameter [A/V2]
VtZero bias threshold voltage [V]
K2Bulk threshold parameter
K5Reduction of pinch-off region
dWNarrowing of channel [m]
dLShortening of channel [m]
RDSDrain-Source-Resistance [Ohm]
TnomParameter measurement temperature [K]
kvtFitting parameter for Vt
kk2Fitting parameter for K2
useHeatPort=true, if heatPort is enabled
TFixed device temperature if useHeatPort = false [K]

Connectors

NameDescription
DDrain
GGate
SSource
BBulk
heatPortConditional heat port

Modelica.Electrical.Analog.Semiconductors.HeatingNPN Modelica.Electrical.Analog.Semiconductors.HeatingNPN

Simple NPN BJT according to Ebers-Moll with heating port

Information

This model is a simple model of a bipolar NPN junction transistor according to Ebers-Moll.
A heating port is added for thermal electric simulation. The heating port is defined in the Modelica.Thermal library.
A typical parameter set is (the parameter Vt is no longer used):

  Bf  Br  Is     Vak  Tauf    Taur  Ccs   Cje     Cjc     Phie  Me   PHic   Mc     Gbc    Gbe
  -   -   A      V    s       s     F     F       F       V     -    V      -      mS     mS
  50  0.1 1e-16  0.02 0.12e-9 5e-9  1e-12 0.4e-12 0.5e-12 0.8   0.4  0.8    0.333  1e-15  1e-15

References:

Vlach, J.; Singal, K.: Computer methods for circuit analysis and design. Van Nostrand Reinhold, New York 1983 on page 317 ff.

Extends from Modelica.Electrical.Analog.Interfaces.ConditionalHeatPort (Partial model to include a conditional HeatPort in order to describe the power loss via a thermal network).

Parameters

NameDescription
BfForward beta
BrReverse beta
IsTransport saturation current [A]
VakEarly voltage (inverse), 1/Volt [1/V]
TaufIdeal forward transit time [s]
TaurIdeal reverse transit time [s]
CcsCollector-substrate(ground) cap. [F]
CjeBase-emitter zero bias depletion cap. [F]
CjcBase-coll. zero bias depletion cap. [F]
PhieBase-emitter diffusion voltage [V]
MeBase-emitter gradation exponent
PhicBase-collector diffusion voltage [V]
McBase-collector gradation exponent
GbcBase-collector conductance [S]
GbeBase-emitter conductance [S]
EMinif x < EMin, the exp(x) function is linearized
EMaxif x > EMax, the exp(x) function is linearized
TnomParameter measurement temperature [K]
XTITemperature exponent for effect on Is
XTBForward and reverse beta temperature exponent
EGEnergy gap for temperature effect on Is [V]
NFForward current emission coefficient
NRReverse current emission coefficient
useHeatPort=true, if heatPort is enabled
TFixed device temperature if useHeatPort = false [K]

Connectors

NameDescription
heatPortConditional heat port
CCollector
BBase
EEmitter

Modelica.Electrical.Analog.Semiconductors.HeatingPNP Modelica.Electrical.Analog.Semiconductors.HeatingPNP

Simple PNP BJT according to Ebers-Moll with heating port

Information

This model is a simple model of a bipolar PNP junction transistor according to Ebers-Moll.
A heating port is added for thermal electric simulation. The heating port is defined in the Modelica.Thermal library.
A typical parameter set is (the parameter Vt is no longer used):

  Bf  Br  Is     Vak  Tauf    Taur  Ccs   Cje     Cjc     Phie  Me   PHic   Mc     Gbc    Gbe
  -   -   A      V    s       s     F     F       F       V     -    V      -      mS     mS
  50  0.1 1e-16  0.02 0.12e-9 5e-9  1e-12 0.4e-12 0.5e-12 0.8   0.4  0.8    0.333  1e-15  1e-15

References:

Vlach, J.; Singal, K.: Computer methods for circuit analysis and design. Van Nostrand Reinhold, New York 1983 on page 317 ff.

Extends from Modelica.Electrical.Analog.Interfaces.ConditionalHeatPort (Partial model to include a conditional HeatPort in order to describe the power loss via a thermal network).

Parameters

NameDescription
BfForward beta
BrReverse beta
IsTransport saturation current [A]
VakEarly voltage (inverse), 1/Volt [1/V]
TaufIdeal forward transit time [s]
TaurIdeal reverse transit time [s]
CcsCollector-substrate(ground) cap. [F]
CjeBase-emitter zero bias depletion cap. [F]
CjcBase-coll. zero bias depletion cap. [F]
PhieBase-emitter diffusion voltage [V]
MeBase-emitter gradation exponent
PhicBase-collector diffusion voltage [V]
McBase-collector gradation exponent
GbcBase-collector conductance [S]
GbeBase-emitter conductance [S]
EMinif x < EMin, the exp(x) function is linearized
EMaxif x > EMax, the exp(x) function is linearized
TnomParameter measurement temperature [K]
XTITemperature exponent for effect on Is
XTBForward and reverse beta temperature exponent
EGEnergy gap for temperature effect on Is [V]
NFForward current emission coefficient
NRReverse current emission coefficient
useHeatPort=true, if heatPort is enabled
TFixed device temperature if useHeatPort = false [K]

Connectors

NameDescription
heatPortConditional heat port
CCollector
BBase
EEmitter

Modelica.Electrical.Analog.Semiconductors.pow Modelica.Electrical.Analog.Semiconductors.pow

Just a helper function for x^y in order that a symbolic engine can apply some transformations more easily

Information

Extends from Modelica.Icons.Function (Icon for functions).

Inputs

NameDescription
x 
y 

Outputs

NameDescription
z 

Modelica.Electrical.Analog.Semiconductors.powlin Modelica.Electrical.Analog.Semiconductors.powlin

Power function (1 - x)^(-y) linearly continued for x > 0 (provided y = const.)

Information

Extends from Modelica.Icons.Function (Icon for functions).

Inputs

NameDescription
x 
y 

Outputs

NameDescription
z 

Modelica.Electrical.Analog.Semiconductors.exlin Modelica.Electrical.Analog.Semiconductors.exlin

Exponential function linearly continued for x > Maxexp

Information

Extends from Modelica.Icons.Function (Icon for functions).

Inputs

NameDescription
x 
Maxexp 

Outputs

NameDescription
z 

Modelica.Electrical.Analog.Semiconductors.exlin2 Modelica.Electrical.Analog.Semiconductors.exlin2

Exponential function linearly continued for x < MinExp and x > Maxexp

Information

Extends from Modelica.Icons.Function (Icon for functions).

Inputs

NameDescription
x 
Minexp 
Maxexp 

Outputs

NameDescription
z 

Modelica.Electrical.Analog.Semiconductors.Thyristor Modelica.Electrical.Analog.Semiconductors.Thyristor

Simple Thyristor Model

Information

This is a simple thyristor model with three pins: Anode, Cathode and Gate. There are three operating modes:conducting, blocking and reverse breakthrough.
As long as the thyristor is in blocking mode it behaves like a linear resistance Roff=VDRM^2/(VTM*IH). But if the voltage between anode and cathode exceeds VDRM or a positive gate current flows for a sufficient time the mode changes to conducting mode. The model stays in conducting mode until the anode current falls below the holding current IH. There is no way to switch off the thyristor via the gate. If the voltage between anode and cathode is negative, the model represents a diode (parameters Vt, Nbv) with reverse breakthrough voltage VRRM.

The dV/dt switch on is not taken into account in this model. The gate circuit is not influenced by the main circuit.

Extends from Modelica.Electrical.Analog.Interfaces.ConditionalHeatPort (Partial model to include a conditional HeatPort in order to describe the power loss via a thermal network).

Parameters

NameDescription
VDRMForward breakthrough voltage [V]
VRRMReverse breakthrough voltage [V]
IDRMSaturation current [A]
VTMConducting voltage [V]
IHHolding current [A]
ITMConducting current [A]
VGTGate trigger voltage [V]
IGTGate trigger current [A]
TONSwitch on time [s]
TOFFSwitch off time [s]
VtVoltage equivalent of temperature (kT/qn) [V]
NbvReverse Breakthrough emission coefficient
useHeatPort=true, if heatPort is enabled
TFixed device temperature if useHeatPort = false [K]

Connectors

NameDescription
heatPortConditional heat port
Anode 
Cathode 
Gate 

Modelica.Electrical.Analog.Semiconductors.SimpleTriac Modelica.Electrical.Analog.Semiconductors.SimpleTriac

Simple triac, based on Semiconductors.Thyristor model

Information

This is a simple TRIAC model based on the extended thyristor model Modelica.Electrical.Analog.Semiconductors.Thyristor.
Two thyristors are contrarily connected in parallel, whereas each transistor is connected with a diode.
Further information regarding the electrical component TRIAC can be detected in documentation of the ideal TRIAC model.
As an additional information: this model is based on the Modelica.Electrical.Analog.Semiconductors.Thyristor.

Attention: The model seems to be very sensitive with respect to the choice of some parameters (e.g., VDRM, VRRM). This is caused by the thyristor model. Further investigations are necessary.

Parameters

NameDescription
VDRMForward breakthrough voltage [V]
VRRMReverse breakthrough voltage [V]
IDRMSaturation current [A]
VTMConducting voltage [V]
IHHolding current [A]
ITMConducting current [A]
VGTGate trigger voltage [V]
IGTGate trigger current [A]
TONSwitch on time [s]
TOFFSwitch off time [s]
VtVoltage equivalent of temperature (kT/qn) [V]
NbvReverse Breakthrough emission coefficient
useHeatPort=true, if HeatPort is enabled
TFixed device temperature if useHeatPort = false [K]

Connectors

NameDescription
nCathode
pAnode
gGate
heatPort 
Automatically generated Thu Dec 19 17:19:54 2019.