Modelica.Electrical.Machines.BasicMachines.Components

Machine components like AirGaps

Information

This package contains components for modeling electrical machines, specially three-phase induction machines, based on space phasor theory. These models use package SpacePhasors.

Extends from Modelica.Icons.Package (Icon for standard packages).

Package Content

Name Description
Modelica.Electrical.Machines.BasicMachines.Components.PartialAirGap PartialAirGap Partial airgap model
Modelica.Electrical.Machines.BasicMachines.Components.AirGapS AirGapS Airgap in stator-fixed coordinate system
Modelica.Electrical.Machines.BasicMachines.Components.AirGapR AirGapR Airgap in rotor-fixed coordinate system
Modelica.Electrical.Machines.BasicMachines.Components.Inductor Inductor Space phasor inductor
Modelica.Electrical.Machines.BasicMachines.Components.SquirrelCage SquirrelCage Squirrel Cage
Modelica.Electrical.Machines.BasicMachines.Components.DamperCage DamperCage Squirrel Cage
Modelica.Electrical.Machines.BasicMachines.Components.ElectricalExcitation ElectricalExcitation Electrical excitation
Modelica.Electrical.Machines.BasicMachines.Components.PermanentMagnet PermanentMagnet Permanent magnet excitation
Modelica.Electrical.Machines.BasicMachines.Components.PermanentMagnetWithLosses PermanentMagnetWithLosses Permanent magnet excitation
Modelica.Electrical.Machines.BasicMachines.Components.InductorDC InductorDC Ideal linear electrical inductor for electrical DC machines
Modelica.Electrical.Machines.BasicMachines.Components.PartialAirGapDC PartialAirGapDC Partial airgap model of a DC machine
Modelica.Electrical.Machines.BasicMachines.Components.AirGapDC AirGapDC Linear airgap model of a DC machine
Modelica.Electrical.Machines.BasicMachines.Components.CompoundDCExcitation CompoundDCExcitation Compound excitation = shunt + series
Modelica.Electrical.Machines.BasicMachines.Components.PartialCore PartialCore Partial model of transformer core with 3 windings
Modelica.Electrical.Machines.BasicMachines.Components.IdealCore IdealCore Ideal transformer with 3 windings
Modelica.Electrical.Machines.BasicMachines.Components.BasicTransformer BasicTransformer Partial model of three-phase transformer

Modelica.Electrical.Machines.BasicMachines.Components.PartialAirGap Modelica.Electrical.Machines.BasicMachines.Components.PartialAirGap

Partial airgap model

Information

Partial model of the airgap, using only equations.

Parameters

NameDescription
mNumber of phases
pNumber of pole pairs

Connectors

NameDescription
flange 
supportSupport at which the reaction torque is acting
spacePhasor_s 
spacePhasor_r 

Modelica.Electrical.Machines.BasicMachines.Components.AirGapS Modelica.Electrical.Machines.BasicMachines.Components.AirGapS

Airgap in stator-fixed coordinate system

Information

Model of the airgap in stator-fixed coordinate system, using only equations.

Extends from PartialAirGap (Partial airgap model).

Parameters

NameDescription
LmMain field inductance [H]
mNumber of phases
pNumber of pole pairs

Connectors

NameDescription
flange 
supportSupport at which the reaction torque is acting
spacePhasor_s 
spacePhasor_r 

Modelica.Electrical.Machines.BasicMachines.Components.AirGapR Modelica.Electrical.Machines.BasicMachines.Components.AirGapR

Airgap in rotor-fixed coordinate system

Information

Model of the airgap in rotor-fixed coordinate system, using only equations.

Extends from PartialAirGap (Partial airgap model).

Parameters

NameDescription
LmdMain field inductance d-axis [H]
LmqMain field inductance q-axis [H]
mNumber of phases
pNumber of pole pairs

Connectors

NameDescription
flange 
supportSupport at which the reaction torque is acting
spacePhasor_s 
spacePhasor_r 

Modelica.Electrical.Machines.BasicMachines.Components.Inductor Modelica.Electrical.Machines.BasicMachines.Components.Inductor

Space phasor inductor

Information

This is a model of an inductor, described with space phasors.

Parameters

NameDescription
L[2]Inductance of both axes [H]

Connectors

NameDescription
spacePhasor_a 
spacePhasor_b 

Modelica.Electrical.Machines.BasicMachines.Components.SquirrelCage Modelica.Electrical.Machines.BasicMachines.Components.SquirrelCage

Squirrel Cage

Information

Model of a squirrel cage / symmetrical damper cage in two axis.

The squirrel cage has an optional (conditional) HeatPort, which can be enabled or disabled by the Boolean parameter useHeatPort. Temperatures of both axis are the same, both losses are added. Material properties alpha of both axis are the same.

Extends from Modelica.Electrical.Analog.Interfaces.ConditionalHeatPort (Partial model to include a conditional HeatPort in order to describe the power loss via a thermal network).

Parameters

NameDescription
LrsigmaRotor stray inductance per phase translated to stator [H]
RrRotor resistance per phase translated to stator at T_ref [Ohm]
T_refReference temperature [K]
alphaTemperature coefficient of resistance at T_ref [1/K]
useHeatPort=true, if heatPort is enabled
TFixed device temperature if useHeatPort = false [K]

Connectors

NameDescription
heatPortConditional heat port
spacePhasor_r 
i[2]Currents out from squirrel cage [A]

Modelica.Electrical.Machines.BasicMachines.Components.DamperCage Modelica.Electrical.Machines.BasicMachines.Components.DamperCage

Squirrel Cage

Information

Model of an asymmetrical damper cage in two axis.

The damper cage has an optional (conditional) HeatPort, which can be enabled or disabled by the Boolean parameter useHeatPort. Temperatures of both axis are the same, both losses are added. Material properties alpha can be set differently for both d- and q-axis, although reference temperature for both resistances is the same.

Extends from Modelica.Electrical.Analog.Interfaces.ConditionalHeatPort (Partial model to include a conditional HeatPort in order to describe the power loss via a thermal network).

Parameters

NameDescription
LrsigmadStray inductance in d-axis per phase translated to stator [H]
LrsigmaqStray inductance in q-axis per phase translated to stator [H]
RrdResistance in d-axis per phase translated to stator at T_ref [Ohm]
RrqResistance in q-axis per phase translated to stator at T_ref [Ohm]
T_refReference temperature of both resistances in d- and q-axis [K]
alphaTemperature coefficient of both resistances in d- and q-axis at T_ref [1/K]
useHeatPort=true, if heatPort is enabled
TFixed device temperature if useHeatPort = false [K]

Connectors

NameDescription
heatPortConditional heat port
i[2]Currents out from damper [A]
lossPowerDamper losses [W]
spacePhasor_r 

Modelica.Electrical.Machines.BasicMachines.Components.ElectricalExcitation Modelica.Electrical.Machines.BasicMachines.Components.ElectricalExcitation

Electrical excitation

Information

Model of an electrical excitation, converting excitation to space phasor.

Parameters

NameDescription
turnsRatioRatio stator current / excitation current

Connectors

NameDescription
spacePhasor_r 
pin_ep 
pin_en 

Modelica.Electrical.Machines.BasicMachines.Components.PermanentMagnet Modelica.Electrical.Machines.BasicMachines.Components.PermanentMagnet

Permanent magnet excitation

Information

Model of a permanent magnet excitation, characterized by an equivalent excitation current.

Parameters

NameDescription
IeEquivalent excitation current [A]

Connectors

NameDescription
spacePhasor_r 

Modelica.Electrical.Machines.BasicMachines.Components.PermanentMagnetWithLosses Modelica.Electrical.Machines.BasicMachines.Components.PermanentMagnetWithLosses

Permanent magnet excitation

Information

Model of a permanent magnet excitation with loss, characterized by an equivalent excitation current.

Extends from Machines.BasicMachines.Components.PermanentMagnet (Permanent magnet excitation), Machines.Losses.InductionMachines.PermanentMagnetLosses (Model of permanent magnet losses dependent on current and speed).

Parameters

NameDescription
IeEquivalent excitation current [A]
mNumber of phases
permanentMagnetLossParametersPermanent magnet loss parameters
useHeatPort=true, if heatPort is enabled

Connectors

NameDescription
spacePhasor_r 
flangeShaft end
supportHousing and support
heatPortOptional port to which dissipated losses are transported in form of heat

Modelica.Electrical.Machines.BasicMachines.Components.InductorDC Modelica.Electrical.Machines.BasicMachines.Components.InductorDC

Ideal linear electrical inductor for electrical DC machines

Information

The linear inductor connects the branch voltage v with the branch current i by v = L * di/dt. If quasiStationary == false, the electrical transients are neglected, i.e., the voltage drop is zero.

Extends from Modelica.Electrical.Analog.Interfaces.OnePort (Component with two electrical pins p and n and current i from p to n).

Parameters

NameDescription
LInductance [H]
quasiStationaryNo electrical transients if true

Connectors

NameDescription
pPositive electrical pin
nNegative electrical pin

Modelica.Electrical.Machines.BasicMachines.Components.PartialAirGapDC Modelica.Electrical.Machines.BasicMachines.Components.PartialAirGapDC

Partial airgap model of a DC machine

Information

Linear model of the airgap (without saturation effects) of a DC machine, using only equations.
Induced excitation voltage is calculated from der(flux), where flux is defined by excitation inductance times excitation current. If quasiStationary == false, the electrical transients are neglected, i.e., the induced excitation voltage is zero.
Induced armature voltage is calculated from flux times angular velocity.

Parameters

NameDescription
quasiStationaryNo electrical transients if true
turnsRatioRatio of armature turns over number of turns of the excitation winding

Connectors

NameDescription
flange 
supportSupport at which the reaction torque is acting
pin_ap 
pin_ep 
pin_an 
pin_en 

Modelica.Electrical.Machines.BasicMachines.Components.AirGapDC Modelica.Electrical.Machines.BasicMachines.Components.AirGapDC

Linear airgap model of a DC machine

Information

Linear model of the airgap (without saturation effects) of a DC machine, using only equations.
Induced excitation voltage is calculated from der(flux), where flux is defined by excitation inductance times excitation current.
Induced armature voltage is calculated from flux times angular velocity.

Extends from PartialAirGapDC (Partial airgap model of a DC machine).

Parameters

NameDescription
quasiStationaryNo electrical transients if true
turnsRatioRatio of armature turns over number of turns of the excitation winding
LeExcitation inductance [H]

Connectors

NameDescription
flange 
supportSupport at which the reaction torque is acting
pin_ap 
pin_ep 
pin_an 
pin_en 

Modelica.Electrical.Machines.BasicMachines.Components.CompoundDCExcitation Modelica.Electrical.Machines.BasicMachines.Components.CompoundDCExcitation

Compound excitation = shunt + series

Information

Model to compound the shunt excitation current and the series excitation current to the total excitation current w.r.t. shunt excitation. This model is intended to be placed between shunt and series excitation pins and the airgap; the connection to airgap has to be grounded at one point.

Parameters

NameDescription
excitationTurnsRatioRatio of series excitation turns over shunt excitation turns

Connectors

NameDescription
pin_pPositive pin to airgap
pin_nNegative pin to airgap
pin_epPositive pin to shunt excitation
pin_enNegative pin to shunt excitation
pin_sepPositive pin to series excitation
pin_senNegative pin to series excitation

Modelica.Electrical.Machines.BasicMachines.Components.PartialCore Modelica.Electrical.Machines.BasicMachines.Components.PartialCore

Partial model of transformer core with 3 windings

Information

Partial model of transformer core with 3 windings; saturation function flux versus magnetizing current has to be defined.

Parameters

NameDescription
mNumber of phases
n12Turns ratio 1:2
n13Turns ratio 1:3

Connectors

NameDescription
plug_p1 
plug_n1 
plug_p2 
plug_n2 
plug_p3 
plug_n3 

Modelica.Electrical.Machines.BasicMachines.Components.IdealCore Modelica.Electrical.Machines.BasicMachines.Components.IdealCore

Ideal transformer with 3 windings

Information

Ideal transformer with 3 windings: no magnetizing current.

Extends from PartialCore (Partial model of transformer core with 3 windings).

Parameters

NameDescription
mNumber of phases
n12Turns ratio 1:2
n13Turns ratio 1:3

Connectors

NameDescription
plug_p1 
plug_n1 
plug_p2 
plug_n2 
plug_p3 
plug_n3 

Modelica.Electrical.Machines.BasicMachines.Components.BasicTransformer Modelica.Electrical.Machines.BasicMachines.Components.BasicTransformer

Partial model of three-phase transformer

Information

Partial model of a three-phase transformer, containing primary and secondary resistances and stray inductances, as well as the iron core. Circuit layout (vector group) of primary and secondary windings have to be defined.
Exactly the same as Interfaces.PartialBasicTransformer, included for compatibility reasons.

Extends from Machines.Interfaces.PartialBasicTransformer (Partial model of three-phase transformer), Modelica.Icons.ObsoleteModel (Icon for classes that are obsolete and will be removed in later versions).

Parameters

NameDescription
nRatio primary voltage (line-to-line) / secondary voltage (line-to-line)
useThermalPortEnable / disable (=fixed temperatures) thermal port
Operational temperatures
T1OperationalOperational temperature of primary resistance [K]
T2OperationalOperational temperature of secondary resistance [K]
Nominal resistances and inductances
R1Primary resistance per phase at TRef [Ohm]
T1RefReference temperature of primary resistance [K]
alpha20_1Temperature coefficient of primary resistance at 20 degC [1/K]
L1sigmaPrimary stray inductance per phase [H]
R2Secondary resistance per phase at TRef [Ohm]
T2RefReference temperature of secondary resistance [K]
alpha20_2Temperature coefficient of secondary resistance at 20 degC [1/K]
L2sigmaSecondary stray inductance per phase [H]

Connectors

NameDescription
plug1Primary plug
plug2Secondary plug
thermalPort 
Automatically generated Thu Dec 19 17:19:56 2019.