Modelica.Electrical.Machines.Examples.DCMachines

Test examples of DC machines

Information

This package contains test examples of DC machines.

Extends from Modelica.Icons.ExamplesPackage (Icon for packages containing runnable examples).

Package Content

Name Description
Modelica.Electrical.Machines.Examples.DCMachines.DCPM_Start DCPM_Start Test example: DC with permanent magnet starting with voltage ramp
Modelica.Electrical.Machines.Examples.DCMachines.DCPM_CurrentControlled DCPM_CurrentControlled Test example: DC with permanent magnet starting with current controller
Modelica.Electrical.Machines.Examples.DCMachines.DCEE_Start DCEE_Start Test example: DC with electrical excitation starting with voltage ramp
Modelica.Electrical.Machines.Examples.DCMachines.DCSE_Start DCSE_Start Test example: DC with serial excitation starting with voltage ramp
Modelica.Electrical.Machines.Examples.DCMachines.DCSE_SinglePhase DCSE_SinglePhase Test example: DC with serial excitation starting with voltage ramp
Modelica.Electrical.Machines.Examples.DCMachines.DCPM_Temperature DCPM_Temperature Test example: Investigate temperature dependency of a DCPM motor
Modelica.Electrical.Machines.Examples.DCMachines.DCPM_Cooling DCPM_Cooling Test example: Cooling of a DCPM motor
Modelica.Electrical.Machines.Examples.DCMachines.DCPM_QuasiStationary DCPM_QuasiStationary Test example: Compare DCPM motors transient - quasistationary
Modelica.Electrical.Machines.Examples.DCMachines.DCPM_withLosses DCPM_withLosses Test example: Investigate influence of losses on DCPM motor performance

Modelica.Electrical.Machines.Examples.DCMachines.DCPM_Start Modelica.Electrical.Machines.Examples.DCMachines.DCPM_Start

Test example: DC with permanent magnet starting with voltage ramp

Information

Test example: Permanent magnet DC machine started with an armature voltage ramp
A voltage ramp is applied to the armature, causing the DC machine to start, and accelerating inertias.
At time tStep a load step is applied.
Simulate for 2 seconds and plot (versus time): Default machine parameters of model DC_PermanentMagnet are used.

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

NameDescription
VaActual armature voltage [V]
tStartStart of armature voltage ramp [s]
tRampArmature voltage ramp [s]
TLoadNominal load torque [N.m]
tStepTime of load torque step [s]
JLoadLoad's moment of inertia [kg.m2]
dcpmData 

Modelica.Electrical.Machines.Examples.DCMachines.DCPM_CurrentControlled Modelica.Electrical.Machines.Examples.DCMachines.DCPM_CurrentControlled

Test example: DC with permanent magnet starting with current controller

Information

Test example: Permanent magnet DC machine started with current controller
The current controller is parameterized according to absolute optimum. At time 0.1 s a reference current step with height = nominal armature current is applied, causing the DC machine to start, and accelerating inertias.
The machine is loaded by a quadratic speed dependent load torque.
Simulate for 2 seconds and plot (versus time): Default machine parameters of model DC_PermanentMagnet are used.

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

NameDescription
TLoadNominal load torque [N.m]
wLoadNominal load torque [rad/s]
JLoadLoad's moment of inertia [kg.m2]
RaWarm armature resistance [Ohm]
ViNominalNominal induced voltage [V]
TaArmature time constant [s]
TsDead time of inverter [s]
kCurrent controller proportional gain [Ohm]
TiCurrent controller integral time constant [s]
kPhiVoltage constant [Wb]
dcpmData 

Modelica.Electrical.Machines.Examples.DCMachines.DCEE_Start Modelica.Electrical.Machines.Examples.DCMachines.DCEE_Start

Test example: DC with electrical excitation starting with voltage ramp

Information

Test example: Electrically separate excited DC machine started with an armature voltage ramp
A voltage ramp is applied to the armature, causing the DC machine to start, and accelerating inertias.
At time tStep a load step is applied.
Simulate for 2 seconds and plot (versus time): Default machine parameters of model DC_ElectricalExcited are used.

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

NameDescription
VaActual armature voltage [V]
tStartStart of armature voltage ramp [s]
tRampArmature voltage ramp [s]
VeActual excitation voltage [V]
TLoadNominal load torque [N.m]
tStepTime of load torque step [s]
JLoadLoad's moment of inertia [kg.m2]
dceeData 

Modelica.Electrical.Machines.Examples.DCMachines.DCSE_Start Modelica.Electrical.Machines.Examples.DCMachines.DCSE_Start

Test example: DC with serial excitation starting with voltage ramp

Information

Test example: Series excited DC machine started with a series resistor
At constant source voltage, a series resistor limiting the armature current, is reduced according to a ramp, causing the DC machine to start, and accelerating inertias against load torque quadratic dependent on speed, finally reaching nominal speed.
Simulate for 2 seconds and plot (versus time): Default machine parameters of model DC_SeriesExcited are used.

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

NameDescription
VaActual armature voltage [V]
tStartStart of resistance ramp [s]
tRampResistance ramp [s]
TLoadNominal load torque [N.m]
wLoadNominal load speed [rad/s]
JLoadLoad's moment of inertia [kg.m2]
dcseData 

Modelica.Electrical.Machines.Examples.DCMachines.DCSE_SinglePhase Modelica.Electrical.Machines.Examples.DCMachines.DCSE_SinglePhase

Test example: DC with serial excitation starting with voltage ramp

Information

Test example: Series excited DC machine at singlephase AC voltage started with a series resistor
At sinusoidal source voltage, a series resistor limiting the armature current, is reduced according to a ramp, causing the DC machine to start, and accelerating inertias against load torque quadratic dependent on speed, finally reaching nominal speed.
Simulate for 2 seconds and plot (versus time): Default machine parameters of model DC_SeriesExcited are used.
Note:
Since both the field and the armature current are sinusoidal, the waveform of the torque is the square of sine. Due to the additional inductive voltage drops, output of the motor is lower, compared to the same motor (DCSE_Start) at DC voltage.

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

NameDescription
VaActual armature voltage RMS [V]
tStartStart of resistance ramp [s]
tRampResistance ramp [s]
TLoadNominal load torque [N.m]
wLoadNominal load speed [rad/s]
JLoadLoad's moment of inertia [kg.m2]
dcseData 

Modelica.Electrical.Machines.Examples.DCMachines.DCPM_Temperature Modelica.Electrical.Machines.Examples.DCMachines.DCPM_Temperature

Test example: Investigate temperature dependency of a DCPM motor

Information

Test example: Investigate influence of armature temperature on a DCPM motor
The motor starts at no-load speed, then a load step is applied.
Beginning with the load step, the armature temperature rises exponentially from 20 degC to 80 degC.
Simulate for 3 seconds and plot (versus time): Default machine parameters are used, but: So the machine is at the beginning in cold condition, ending in warm condition (with the same armature resistance as the unmodified machine).

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

NameDescription
VaActual armature voltage [V]
VeActual excitation voltage [V]
w0No-load speed [rad/s]
TLoadNominal load torque [N.m]
JLoadLoad's moment of inertia [kg.m2]
dcpmData 

Modelica.Electrical.Machines.Examples.DCMachines.DCPM_Cooling Modelica.Electrical.Machines.Examples.DCMachines.DCPM_Cooling

Test example: Cooling of a DCPM motor

Information

Test example: Demonstrate cooling of a DCPM motor
The motor starts at no-load speed, then load pulses are applied.
The cooling circuit consists of armature's thermal capacitance, a thermal conductance between armature and core, core's thermal capacitance and a thermal conductance between core and coolant. The coolant flow circuit consists of inlet, volume flow, a pipe connected to the core and the outlet.
Please note:
  1. the total coolant's temperature rise is 10 K (over coolant inlet)
  2. the core's temperature rise is 27.5 K (over coolant's average temperature between inlet and outlet)
  3. the armature's temperature rise is 55 K (over coolant's average temperature between inlet and outlet)
Simulate for 25 seconds and plot (versus time): Therefore the armature temperature would reach nominal armature temperature at constant nominal load.
Default machine parameters are used, but:

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

NameDescription
VaActual armature voltage [V]
VeActual excitation voltage [V]
w0No-load speed [rad/s]
TLoadNominal load torque [N.m]
JLoadLoad's moment of inertia [kg.m2]
TAmbientAmbient temperature [K]
CaArmature's heat capacity [J/K]
CcCore's heat capacity [J/K]
G_armature_coreHeat conductance armature - core [W/K]
G_core_coolingHeat conductance core - cooling [W/K]
CoolantFlowCoolant flow [m3/s]
dcpmData 

Modelica.Electrical.Machines.Examples.DCMachines.DCPM_QuasiStationary Modelica.Electrical.Machines.Examples.DCMachines.DCPM_QuasiStationary

Test example: Compare DCPM motors transient - quasistationary

Information

Test example: Compare DCPM motors transient and quasistationary
The motors start at no-load speed, then load pulses are applied.
Simulate for 2 seconds and plot (versus time):

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

NameDescription
VaActual armature voltage [V]
VeActual excitation voltage [V]
w0No-load speed [rad/s]
TLoadNominal load torque [N.m]
JLoadLoad's moment of inertia [kg.m2]
dcpmData 

Modelica.Electrical.Machines.Examples.DCMachines.DCPM_withLosses Modelica.Electrical.Machines.Examples.DCMachines.DCPM_withLosses

Test example: Investigate influence of losses on DCPM motor performance

Information

Test example: Investigate influence of losses on DCPM motor performance
Both motors are started with a voltage ramp applied to the armature, causing the DC machines to start, and accelerating inertias. Both machines are loading with a quadratic speed dependent load torque.
The first machine dcpm1 uses default machine parameters of model DC_PermanentMagnet, the second machine dcpm2 is parametrized with additional losses:
dcpm1 dcpm2
Armature voltage 100 100 V
Armature current 100 100 A
Inner voltage 95.0 94.5 V
Nominal speed 1425.0 1417.5 rpm
Armature resistance 0.05000 0.03864 Ohm
Temperature coefficient n/a 0.00392 1/K
Reference temperature n/a 20 degC
Operation temperature n/a 95 degC
Brush voltage drop n/a 0.5 V
Electrical input 10,000 10,000 W
Armature copper losses 500 500 W
Core losses n/a 200 W
Stray load losses n/a 50 W
Friction losses n/a 100 W
Brush losses n/a 50 W
Mechanical output 9,500 9,100 W
Nominal torque 63,66 61,30 Nm

Note: The reference values (voltage, current, speed) are already propagated to the loss records, using the nominal operation point.
See:
Anton Haumer, Christian Kral, Hansjörg Kapeller, Thomas Bäuml, Johannes V. Gragger
The AdvancedMachines Library: Loss Models for Electric Machines
Modelica 2009, 7th International Modelica Conference

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

NameDescription
VaActual armature voltage [V]
tStartStart of armature voltage ramp [s]
tRampArmature voltage ramp [s]
TLoad1Nominal load torque [N.m]
wLoad1Nominal load speed [rad/s]
TLoad2Nominal load torque [N.m]
wLoad2Nominal load speed [rad/s]
JLoadLoad's moment of inertia [kg.m2]
dcpmData1 
dcpmData2 
Automatically generated Thu Dec 19 17:19:55 2019.