Modelica.Math.FastFourierTransform.Internal

Internal library that should not be used directly by a user

Information

Extends from Modelica.Icons.InternalPackage (Icon for an internal package (indicating that the package should not be directly utilized by user)).

Package Content

Name Description
Modelica.Math.FastFourierTransform.Internal.rawRealFFT rawRealFFT Compute raw Fast Fourier Transform for real signal vector
Modelica.Math.FastFourierTransform.Internal.prime235Factorization prime235Factorization Factorization of an integer in prime numbers 2,3,5

Modelica.Math.FastFourierTransform.Internal.rawRealFFT Modelica.Math.FastFourierTransform.Internal.rawRealFFT

Compute raw Fast Fourier Transform for real signal vector

Information

Syntax

(info, amplitudes, phases) = rawRealFFT(u);

Description

Raw interface to a function of the Kiss_FFT package to compute the FFT of a real, sampled signal. The input argument of this function is a Real vector u. size(u,1) must be even. An efficient computation is performed, if size(u,1) = 2^a*3^b*5^c (a,b,c Integer ≥ 0). The function computes a real FFT (Fast Fourier Transform) of u and returns the result in form of the outputs amplitudes and phases. Argument info provides additional information:

   info = 0: Successful FFT computation.
   info = 1: size(u,1) is not even.
   info = 2: size(work,1) is not correct (= a protected utility array).
   info = 3: Another error.

Note, in the original publication about the efficient computation of FFT (Cooley and Tukey, 1965), the number of sample points must be 2^a. However, all newer FFT algorithms do not have this strong restriction and especially not the open source software KissFFT from Mark Borgerding used in this function.

References

Mark Borgerding (2010):
KissFFT, version 1.3.0. http://sourceforge.net/projects/kissfft/.
 
James W. Cooley, John W. Tukey (1965):
An algorithm for the machine calculation of complex Fourier series. Math. Comput. 19: 297-301. doi:10.2307/2003354.
 
Martin R. Kuhn, Martin Otter, Tim Giese (2015):
Model Based Specifications in Aircraft Systems Design. Modelica 2015 Conference, Versailles, France, pp. 491-500, Sept.23-25, 2015. Download from: http://www.ep.liu.se/ecp/118/053/ecp15118491.pdf

Example

(info, A, phases) = realFFT({0,0.1,0.2,0.4,0.5, 0.6})

Extends from Modelica.Icons.Function (Icon for functions).

Inputs

NameDescription
u[:]Signal for which FFT shall be computed (size(nu,1) MUST be EVEN and should be an integer multiple of 2,3,5, that is size(nu,1) = 2^a*3^b*5^c, with a,b,c Integer >= 0)

Outputs

NameDescription
infoInformation flag (0: FFT computed, 1: nu is not even, 2: nwork is wrong, 3: another error)
amplitudes[div(size(u, 1), 2) + 1]Amplitudes of FFT
phases[div(size(u, 1), 2) + 1]Phases of FFT

Modelica.Math.FastFourierTransform.Internal.prime235Factorization Modelica.Math.FastFourierTransform.Internal.prime235Factorization

Factorization of an integer in prime numbers 2,3,5

Information

Syntax

(success, e2, e3, e5) = prime235Factorization(n);

Description

Compute the factorization of input Integer n in prime numbers 2, 3, and 5. If this is possible, success = true and e2 is the number of prime numbers2, e3 the number of prime numbers 3 and e5 the number of prime numbers 5. If this is not possible, success = false, and e2, e3, e5 are dummy values.

Example

(success, e2, e3, e5) = prime235Factorization(60)   // success=true, e2=2, e3=1, e5=1 (= 2^2*3^1*5^1)
(success, e2, e3, e5) = prime235Factorization(7)    // success=false

Extends from Modelica.Icons.Function (Icon for functions).

Inputs

NameDescription
n 

Outputs

NameDescription
success= true, if factorization in 2,3,5 is possible
e2n = 2^e2*3^e3*5^e5
e3n = 2^e2*3^e3*5^e5
e5n = 2^e2*3^e3*5^e5
Automatically generated Thu Dec 19 17:20:25 2019.