This package contains external Modelica functions as interface to the LAPACK library (http://www.netlib.org/lapack) that provides FORTRAN subroutines to solve linear algebra tasks. Usually, these functions are not directly called, but only via the much more convenient interface of Modelica.Math.Matrices. The documentation of the LAPACK functions is a copy of the original FORTRAN code. The details of LAPACK are described in:
See also http://en.wikipedia.org/wiki/Lapack.
This package contains a direct interface to the LAPACK subroutines
Extends from Modelica.Icons.Package
(Icon for standard packages).
Name | Description |
---|---|
dgbsv | Solve real system of linear equations A*X=B with a B matrix |
dgbsv_vec | Solve real system of linear equations A*x=b with a b vector |
dgecon | Estimates the reciprocal of the condition number of a general real matrix A |
dgees | Computes real Schur form T of real nonsymmetric matrix A, and, optionally, the matrix of Schur vectors Z as well as the eigenvalues |
dgeev | Compute eigenvalues and (right) eigenvectors for real nonsymmetric matrix A |
dgeev_eigenValues | Compute eigenvalues for real nonsymmetric matrix A |
dgeevx | Compute the eigenvalues and the (real) left and right eigenvectors of matrix A, using lapack routine dgeevx |
dgegv | Compute generalized eigenvalues for a (A,B) system |
dgehrd | reduces a real general matrix A to upper Hessenberg form H by an orthogonal similarity transformation: Q' * A * Q = H |
dgels_vec | Solves overdetermined or underdetermined real linear equations A*x=b with a b vector |
dgelsx | Computes the minimum-norm solution to a real linear least squares problem with rank deficient A |
dgelsx_vec | Computes the minimum-norm solution to a real linear least squares problem with rank deficient A |
dgelsy | Computes the minimum-norm solution to a real linear least squares problem with rank deficient A |
dgelsy_vec | Computes the minimum-norm solution to a real linear least squares problem with rank deficient A |
dgeqpf | Compute QR factorization of square or rectangular matrix A with column pivoting (A(:,p) = Q*R) |
dgeqrf | computes a QR factorization without pivoting |
dgesdd | Determine singular value decomposition |
dgesv | Solve real system of linear equations A*X=B with a B matrix |
dgesv_vec | Solve real system of linear equations A*x=b with a b vector |
dgesvd | Determine singular value decomposition |
dgesvd_sigma | Determine singular values |
dgesvx | Solve real system of linear equations op(A)*X=B, op(A) is A or A' according to the Boolean input transposed |
dgetrf | Compute LU factorization of square or rectangular matrix A (A = P*L*U) |
dgetri | Computes the inverse of a matrix using the LU factorization from dgetrf(..) |
dgetrs | Solves a system of linear equations with the LU decomposition from dgetrf(..) |
dgetrs_vec | Solves a system of linear equations with the LU decomposition from dgetrf(..) |
dggev | Compute generalized eigenvalues, as well as the left and right eigenvectors for a (A,B) system |
dggevx | Compute generalized eigenvalues for a (A,B) system, using lapack routine dggevx |
dgglse_vec | Solve a linear equality constrained least squares problem |
dgtsv | Solve real system of linear equations A*X=B with B matrix and tridiagonal A |
dgtsv_vec | Solve real system of linear equations A*x=b with b vector and tridiagonal A |
dhgeqz | Compute generalized eigenvalues for a (A,B) system |
dhseqr | Compute eigenvalues of a matrix H using lapack routine DHSEQR for Hessenberg form matrix |
dlange | Norm of a matrix |
dorghr | Generates a real orthogonal matrix Q which is defined as the product of IHI-ILO elementary reflectors of order N, as returned by DGEHRD |
dorgqr | Generates a Real orthogonal matrix Q which is defined as the product of elementary reflectors as returned from dgeqpf |
dormhr | overwrites the general real M-by-N matrix C with Q * C or C * Q or Q' * C or C * Q', where Q is an orthogonal matrix as returned by dgehrd |
dormqr | overwrites the general real M-by-N matrix C with Q * C or C * Q or Q' * C or C * Q', where Q is an orthogonal matrix of a QR factorization as returned by dgeqrf |
dpotrf | Computes the Cholesky factorization of a real symmetric positive definite matrix A |
dtrevc | Compute the right and/or left eigenvectors of a real upper quasi-triangular matrix T |
dtrsen | Reorder the real Schur factorization of a real matrix |
dtrsm | Solve one of the matrix equations op( A )*X = alpha*B, or X*op( A ) = alpha*B, where A is triangular matrix. BLAS routine |
dtrsyl | Solve the real Sylvester matrix equation op(A)*X + X*op(B) = scale*C or op(A)*X - X*op(B) = scale*C |
Extends from Modelica.Icons.Function
(Icon for functions).
Type | Name | Description |
---|---|---|
Real | A[:,size(A, 1)] |   |
Type | Name | Description |
---|---|---|
Real | eigenReal[size(A, 1)] | Real part of eigen values |
Real | eigenImag[size(A, 1)] | Imaginary part of eigen values |
Real | eigenVectors[size(A, 1),size(A, 1)] | Right eigen vectors |
Integer | info |   |
Extends from Modelica.Icons.Function
(Icon for functions).
Type | Name | Description |
---|---|---|
Real | A[:,size(A, 1)] |   |
Type | Name | Description |
---|---|---|
Real | EigenReal[size(A, 1)] |   |
Real | EigenImag[size(A, 1)] |   |
Integer | info |   |
Extends from Modelica.Icons.Function
(Icon for functions).
Type | Name | Description |
---|---|---|
Real | A[:,size(A, 1)] |   |
Real | B[size(A, 1),size(A, 1)] |   |
Type | Name | Description |
---|---|---|
Real | alphaReal[size(A, 1)] | Real part of alpha (eigenvalue=(alphaReal+i*alphaImag)/beta) |
Real | alphaImag[size(A, 1)] | Imaginary part of alpha |
Real | beta[size(A, 1)] | Denominator of eigenvalue |
Integer | info |   |
Extends from Modelica.Icons.Function
(Icon for functions).
Type | Name | Description |
---|---|---|
Real | A[:,:] |   |
Real | B[size(A, 1),:] |   |
Real | rcond | Reciprocal condition number to estimate rank |
Type | Name | Description |
---|---|---|
Real | X[max(size(A, 1), size(A, 2)),size(B, 2)] | Solution is in first size(A,2) rows |
Integer | info |   |
Integer | rank | Effective rank of A |
Extends from Modelica.Icons.Function
(Icon for functions).
Type | Name | Description |
---|---|---|
Real | A[:,:] |   |
Real | b[size(A, 1)] |   |
Real | rcond | Reciprocal condition number to estimate rank |
Type | Name | Description |
---|---|---|
Real | x[max(size(A, 1), size(A, 2))] | solution is in first size(A,2) rows |
Integer | info |   |
Integer | rank | Effective rank of A |
Extends from Modelica.Icons.Function
(Icon for functions).
Type | Name | Description |
---|---|---|
Real | A[:,:] |   |
Real | B[size(A, 1),:] |   |
Real | rcond | Reciprocal condition number to estimate rank |
Type | Name | Description |
---|---|---|
Real | X[max(size(A, 1), size(A, 2)),size(B, 2)] | Solution is in first size(A,2) rows |
Integer | info |   |
Integer | rank | Effective rank of A |
Extends from Modelica.Icons.Function
(Icon for functions).
Type | Name | Description |
---|---|---|
Real | A[:,:] |   |
Real | b[size(A, 1)] |   |
Real | rcond | Reciprocal condition number to estimate rank |
Type | Name | Description |
---|---|---|
Real | x[max(size(A, 1), size(A, 2))] | solution is in first size(A,2) rows |
Integer | info |   |
Integer | rank | Effective rank of A |
Extends from Modelica.Icons.Function
(Icon for functions).
Type | Name | Description |
---|---|---|
Real | A[:,:] |   |
Real | b[size(A, 1)] |   |
Type | Name | Description |
---|---|---|
Real | x[max(size(A, 1), size(A, 2))] | solution is in first size(A,2) rows |
Integer | info |   |
Extends from Modelica.Icons.Function
(Icon for functions).
Type | Name | Description |
---|---|---|
Real | A[:,size(A, 1)] |   |
Real | B[size(A, 1),:] |   |
Type | Name | Description |
---|---|---|
Real | X[size(A, 1),size(B, 2)] |   |
Integer | info |   |
Extends from Modelica.Icons.Function
(Icon for functions).
Type | Name | Description |
---|---|---|
Real | A[:,size(A, 1)] |   |
Real | b[size(A, 1)] |   |
Type | Name | Description |
---|---|---|
Real | x[size(A, 1)] |   |
Integer | info |   |
Extends from Modelica.Icons.Function
(Icon for functions).
Type | Name | Description |
---|---|---|
Real | A[:,:] | Minimize |A*x - c|^2 |
Real | c[size(A, 1)] |   |
Real | B[:,size(A, 2)] | subject to B*x=d |
Real | d[size(B, 1)] |   |
Type | Name | Description |
---|---|---|
Real | x[size(A, 2)] | solution vector |
Integer | info |   |
Extends from Modelica.Icons.Function
(Icon for functions).
Type | Name | Description |
---|---|---|
Real | superdiag[:] |   |
Real | diag[size(superdiag, 1) + 1] |   |
Real | subdiag[size(superdiag, 1)] |   |
Real | B[size(diag, 1),:] |   |
Type | Name | Description |
---|---|---|
Real | X[size(B, 1),size(B, 2)] |   |
Integer | info |   |
Extends from Modelica.Icons.Function
(Icon for functions).
Type | Name | Description |
---|---|---|
Real | superdiag[:] |   |
Real | diag[size(superdiag, 1) + 1] |   |
Real | subdiag[size(superdiag, 1)] |   |
Real | b[size(diag, 1)] |   |
Type | Name | Description |
---|---|---|
Real | x[size(b, 1)] |   |
Integer | info |   |
Extends from Modelica.Icons.Function
(Icon for functions).
Type | Name | Description |
---|---|---|
Integer | n | Number of equations |
Integer | kLower | Number of lower bands |
Integer | kUpper | Number of upper bands |
Real | A[2 * kLower + kUpper + 1,n] |   |
Real | B[n,:] |   |
Type | Name | Description |
---|---|---|
Real | X[n,size(B, 2)] |   |
Integer | info |   |
Extends from Modelica.Icons.Function
(Icon for functions).
Type | Name | Description |
---|---|---|
Integer | n | Number of equations |
Integer | kLower | Number of lower bands |
Integer | kUpper | Number of upper bands |
Real | A[2 * kLower + kUpper + 1,n] |   |
Real | b[n] |   |
Type | Name | Description |
---|---|---|
Real | x[n] |   |
Integer | info |   |
Extends from Modelica.Icons.Function
(Icon for functions).
Type | Name | Description |
---|---|---|
Real | A[:,:] |   |
Type | Name | Description |
---|---|---|
Real | sigma[min(size(A, 1), size(A, 2))] |   |
Real | U[size(A, 1),size(A, 1)] |   |
Real | VT[size(A, 2),size(A, 2)] |   |
Integer | info |   |
Extends from Modelica.Icons.Function
(Icon for functions).
Type | Name | Description |
---|---|---|
Real | A[:,:] |   |
Type | Name | Description |
---|---|---|
Real | sigma[min(size(A, 1), size(A, 2))] |   |
Integer | info |   |
Extends from Modelica.Icons.Function
(Icon for functions).
Type | Name | Description |
---|---|---|
Real | A[:,:] | Square or rectangular matrix |
Type | Name | Description |
---|---|---|
Real | LU[size(A, 1),size(A, 2)] |   |
Integer | pivots[min(size(A, 1), size(A, 2))] | Pivot vector |
Integer | info | Information |
Extends from Modelica.Icons.Function
(Icon for functions).
Type | Name | Description |
---|---|---|
Real | LU[:,size(LU, 1)] | LU factorization of dgetrf of a square matrix |
Integer | pivots[size(LU, 1)] | Pivot vector of dgetrf |
Real | B[size(LU, 1),:] | Right hand side matrix B |
Type | Name | Description |
---|---|---|
Real | X[size(B, 1),size(B, 2)] | Solution matrix X |
Integer | info |   |
Extends from Modelica.Icons.Function
(Icon for functions).
Type | Name | Description |
---|---|---|
Real | LU[:,size(LU, 1)] | LU factorization of dgetrf of a square matrix |
Integer | pivots[size(LU, 1)] | Pivot vector of dgetrf |
Real | b[size(LU, 1)] | Right hand side vector b |
Type | Name | Description |
---|---|---|
Real | x[size(b, 1)] |   |
Integer | info |   |
Extends from Modelica.Icons.Function
(Icon for functions).
Type | Name | Description |
---|---|---|
Real | LU[:,size(LU, 1)] | LU factorization of dgetrf of a square matrix |
Integer | pivots[size(LU, 1)] | Pivot vector of dgetrf |
Type | Name | Description |
---|---|---|
Real | inv[size(LU, 1),size(LU, 2)] | Inverse of matrix P*L*U |
Integer | info |   |
Extends from Modelica.Icons.Function
(Icon for functions).
Type | Name | Description |
---|---|---|
Real | A[:,:] | Square or rectangular matrix |
Type | Name | Description |
---|---|---|
Real | QR[size(A, 1),size(A, 2)] | QR factorization in packed format |
Real | tau[min(size(A, 1), size(A, 2))] | The scalar factors of the elementary reflectors of Q |
Integer | p[size(A, 2)] | Pivot vector |
Integer | info |   |
Extends from Modelica.Icons.Function
(Icon for functions).
Type | Name | Description |
---|---|---|
Real | QR[:,:] | QR from dgeqpf |
Real | tau[min(size(QR, 1), size(QR, 2))] | The scalar factors of the elementary reflectors of Q |
Type | Name | Description |
---|---|---|
Real | Q[size(QR, 1),size(QR, 2)] | Orthogonal matrix Q |
Integer | info |   |
Extends from Modelica.Icons.Function
(Icon for functions).
Type | Name | Description |
---|---|---|
Real | A[:,size(A, 1)] | Square matrix |
Type | Name | Description |
---|---|---|
Real | T[size(A, 1),size(A, 2)] | Real Schur form with A = Z*T*Z' |
Real | Z[size(A, 1),size(A, 1)] | orthogonal matrix Z of Schur vectors |
Real | eval_real[size(A, 1)] | real part of the eigenvectors of A |
Real | eval_imag[size(A, 1)] | imaginary part of the eigenvectors of A |
Integer | info |   |
Extends from Modelica.Icons.Function
(Icon for functions).
Type | Name | Description |
---|---|---|
String | job | Specifies the usage of a condition number |
String | compq | Is "V" if Schur vector matrix is to be updated |
Boolean | select[:] | Specifies the eigenvalues to reorder |
Real | T[:,:] | Real Schur form to be reordered |
Real | Q[:,size(T, 2)] | Matrix of the Schur vectors |
Type | Name | Description |
---|---|---|
Real | To[:,:] | Reordered Schur form |
Real | Qo[:,:] | Reordered Schur vectors |
Real | wr[size(T, 2)] | Reordered eigenvalues, real part |
Real | wi[size(T, 2)] | Reordered eigenvalues, imaginary part |
Integer | m | Dimension of the invariant sub space spanned bei the selected eigenvalues |
Real | s | Lower bound of the reciprocal condition number. Not referenced for job==V |
Real | sep | Estimated reciprocal condition number of the specified invariant subspace |
Integer | info |   |
Extends from Modelica.Icons.Function
(Icon for functions).
Type | Name | Description |
---|---|---|
Real | A[:,size(A, 1)] | Real square matrix A |
Real | B[size(A, 1),:] | Real matrix B |
Boolean | transposed | True if the equation to be solved is A'*X=B |
Type | Name | Description |
---|---|---|
Real | X[size(A, 1),size(B, 2)] | Solution matrix |
Integer | info |   |
Real | rcond | reciprocal condition number of the matrix A |
Extends from Modelica.Icons.Function
(Icon for functions).
Type | Name | Description |
---|---|---|
Real | A[:,:] | Upper quais-triangular matrix |
Real | B[:,:] | Upper quais-triangular matrix |
Real | C[if tranA then size(A, 1) else size(A, 2),if tranB then size(B, 1) else size(B, 2)] | Right side of the Sylvester equation |
Boolean | tranA | True if op(A)=A' |
Boolean | tranB | True if op(B)=B' |
Integer | isgn | Specifies the sign in the equation, +1 or -1 |
Type | Name | Description |
---|---|---|
Real | X[size(C, 1),size(C, 2)] | Solution of the Sylvester equation |
Real | scale | Scale factor |
Integer | info |   |
Extends from Modelica.Icons.Function
(Icon for functions).
Type | Name | Description |
---|---|---|
Real | H[:,size(H, 1)] | Matrix H with Hessenberg form |
Boolean | eigenValuesOnly | True to compute the eigenvalues. False to compute the Schur form too |
String | compz | Specifies the computation of the Schur vectors |
Real | Z[:,:] | Matrix Z |
Type | Name | Description |
---|---|---|
Real | alphaReal[size(H, 1)] | Real part of alpha (eigenvalue=(alphaReal+i*alphaImag)) |
Real | alphaImag[size(H, 1)] | Imaginary part of alpha (eigenvalue=(alphaReal+i*alphaImag)) |
Integer | info |   |
Real | Ho[:,:] | Schur decomposition (if eigenValuesOnly==false, unspecified else) |
Real | Zo[:,:] |   |
Real | work[3 * max(1, size(H, 1))] |   |
Extends from Modelica.Icons.Function
(Icon for functions).
Type | Name | Description |
---|---|---|
Real | A[:,:] | Real matrix A |
String | norm | specifies the norm, i.e., 1, I, F, M |
Type | Name | Description |
---|---|---|
Real | anorm | norm of A |
Extends from Modelica.Icons.Function
(Icon for functions).
Type | Name | Description |
---|---|---|
Real | LU_of_A[:,:] | LU factorization of a real matrix A |
Boolean | inf | Is true if infinity norm is used and false for 1-norm |
Real | anorm | norm of A |
Type | Name | Description |
---|---|---|
Real | rcond | Reciprocal condition number of A |
Integer | info |   |
Extends from Modelica.Icons.Function
(Icon for functions).
Type | Name | Description |
---|---|---|
Real | A[:,size(A, 1)] |   |
Integer | ilo | lowest index where the original matrix had been Hessenbergform |
Integer | ihi | highest index where the original matrix had been Hessenbergform |
Type | Name | Description |
---|---|---|
Real | Aout[size(A, 1),size(A, 2)] | contains the Hessenberg form in the upper triangle and the first subdiagonal and below the first subdiagonal it contains the elementary reflectors which represents (with array tau) as a product the orthogonal matrix Q |
Real | tau[max(size(A, 1), 1) - 1] | scalar factors of the elementary reflectors |
Integer | info |   |
Extends from Modelica.Icons.Function
(Icon for functions).
Type | Name | Description |
---|---|---|
Real | A[:,:] | Square or rectangular matrix |
Type | Name | Description |
---|---|---|
Real | Aout[size(A, 1),size(A, 2)] | the upper triangle of the array contains the upper trapezoidal matrix R; the elements below the diagonal, together with the array TAU, represent the orthogonal matrix Q as a product of elementary reflectors |
Real | tau[min(size(A, 1), size(A, 2))] | scalar factors of the elementary reflectors |
Integer | info |   |
Real | work[3 * max(1, size(A, 2))] |   |
Extends from Modelica.Icons.Function
(Icon for functions).
Type | Name | Description |
---|---|---|
Real | A[:,size(A, 1)] |   |
Type | Name | Description |
---|---|---|
Real | alphaReal[size(A, 1)] | Real part of alpha (eigenvalue=(alphaReal+i*alphaImag)) |
Real | alphaImag[size(A, 1)] | Imaginary part of alpha (eigenvalue=(alphaReal+i*alphaImag)) |
Real | lEigenVectors[size(A, 1),size(A, 1)] | left eigenvectors of matrix A |
Real | rEigenVectors[size(A, 1),size(A, 1)] | right eigenvectors of matrix A |
Real | AS[size(A, 1),size(A, 2)] | AS iss the real Schur form of the balanced version of the input matrix A |
Integer | info |   |
Extends from Modelica.Icons.Function
(Icon for functions).
Type | Name | Description |
---|---|---|
Real | A[:,:] |   |
Type | Name | Description |
---|---|---|
Real | sigma[min(size(A, 1), size(A, 2))] |   |
Real | U[size(A, 1),size(A, 1)] |   |
Real | VT[size(A, 2),size(A, 2)] |   |
Integer | info |   |
Extends from Modelica.Icons.Function
(Icon for functions).
Type | Name | Description |
---|---|---|
Real | A[:,size(A, 1)] |   |
Real | B[size(A, 1),size(A, 1)] |   |
Integer | nA | The actual dimensions of matrices A and B (the computation is performed for A[1:nA,1:nA], B[1:nA,1:nA]) |
Type | Name | Description |
---|---|---|
Real | alphaReal[size(A, 1)] | Real part of alpha (eigenvalue=(alphaReal+i*alphaImag)/beta) |
Real | alphaImag[size(A, 1)] | Imaginary part of alpha |
Real | beta[size(A, 1)] | Denominator of eigenvalue |
Real | lEigenVectors[size(A, 1),size(A, 1)] | left eigenvectors of matrix A |
Real | rEigenVectors[size(A, 1),size(A, 1)] | right eigenvectors of matrix A |
Integer | info |   |
Extends from Modelica.Icons.Function
(Icon for functions).
Type | Name | Description |
---|---|---|
Real | A[:,size(A, 1)] |   |
Real | B[size(A, 1),size(A, 1)] |   |
Type | Name | Description |
---|---|---|
Real | alphaReal[size(A, 1)] | Real part of alpha (eigenvalue=(alphaReal+i*alphaImag)/beta) |
Real | alphaImag[size(A, 1)] | Imaginary part of alpha |
Real | beta[size(A, 1)] | Denominator of eigenvalue |
Real | lEigenVectors[size(A, 1),size(A, 1)] | left eigenvectors of matrix A |
Real | rEigenVectors[size(A, 1),size(A, 1)] | right eigenvectors of matrix A |
Integer | info |   |
Extends from Modelica.Icons.Function
(Icon for functions).
Type | Name | Description |
---|---|---|
Real | A[:,size(A, 1)] |   |
Real | B[size(A, 1),size(A, 1)] |   |
Type | Name | Description |
---|---|---|
Real | alphaReal[size(A, 1)] | Real part of alpha (eigenvalue=(alphaReal+i*alphaImag)/beta) |
Real | alphaImag[size(A, 1)] | Imaginary part of alpha |
Real | beta[size(A, 1)] | Denominator of eigenvalue |
Integer | info |   |
Extends from Modelica.Icons.Function
(Icon for functions).
Type | Name | Description |
---|---|---|
Real | C[:,:] |   |
Real | A[:,:] |   |
Real | tau[if side == "L" then size(C, 2) - 1 else size(C, 1) - 1] |   |
String | side |   |
String | trans |   |
Integer | ilo | lowest index where the original matrix had been Hessenbergform |
Integer | ihi | highest index where the original matrix had been Hessenbergform |
Type | Name | Description |
---|---|---|
Real | Cout[size(C, 1),size(C, 2)] | contains the Hessenberg form in the upper triangle and the first subdiagonal and below the first subdiagonal it contains the elementary reflectors which represents (with array tau) as a product the orthogonal matrix Q |
Integer | info |   |
Extends from Modelica.Icons.Function
(Icon for functions).
Type | Name | Description |
---|---|---|
Real | C[:,:] |   |
Real | A[:,:] |   |
Real | tau[:] |   |
String | side |   |
String | trans |   |
Type | Name | Description |
---|---|---|
Real | Cout[size(C, 1),size(C, 2)] | contains Q*C or Q**T*C or C*Q**T or C*Q |
Integer | info |   |
Extends from Modelica.Icons.Function
(Icon for functions).
Type | Name | Description |
---|---|---|
Real | T[:,size(T, 1)] | Upper quasi triangular matrix |
String | side | Specify which eigenvectors |
String | howmny | Specify how many eigenvectors |
Real | Q[size(T, 1),size(T, 1)] | Orthogonal matrix Q of Schur vectors returned by DHSEQR |
Type | Name | Description |
---|---|---|
Real | lEigenVectors[size(T, 1),size(T, 1)] | left eigenvectors of matrix T |
Real | rEigenVectors[size(T, 1),size(T, 1)] | right eigenvectors of matrix T |
Integer | info |   |
Extends from Modelica.Icons.Function
(Icon for functions).
Type | Name | Description |
---|---|---|
Real | A[:,size(A, 1)] | Real symmetric positive definite matrix A |
Boolean | upper | True if the upper triangle of A is provided |
Type | Name | Description |
---|---|---|
Real | Acholesky[size(A, 1),size(A, 1)] | Cholesky factor |
Integer | info |   |
Extends from Modelica.Icons.Function
(Icon for functions).
Type | Name | Description |
---|---|---|
Real | A[:,:] | Input matrix A |
Real | B[:,:] | Input matrix B |
Real | alpha | Factor alpha |
Boolean | right | True if A is right multiplication |
Boolean | upper | True if A is upper triangular |
Boolean | trans | True if op(A) means transposed(A) |
Boolean | unitTriangular | True if A is unit triangular, i.e., all diagonal elements of A are equal to 1 |
Type | Name | Description |
---|---|---|
Real | X[size(B, 1),size(B, 2)] | Matrix Bout=alpha*op( A )*B, or B := alpha*B*op( A ) |
Extends from Modelica.Icons.Function
(Icon for functions).
Type | Name | Description |
---|---|---|
Real | A[:,size(A, 1)] | Square matrix with the elementary reflectors |
Integer | ilo | lowest index where the original matrix had been Hessenbergform - ilo must have the same value as in the previous call of DGEHRD |
Integer | ihi | highest index where the original matrix had been Hessenbergform - ihi must have the same value as in the previous call of DGEHRD |
Real | tau[max(0, size(A, 1) - 1)] | scalar factors of the elementary reflectors |
Type | Name | Description |
---|---|---|
Real | Aout[size(A, 1),size(A, 2)] | Orthogonal matrix as a result of elementary reflectors |
Integer | info |   |
Generated 2018-12-12 12:14:35 EST by MapleSim.