ElectroMagneticConverterIdeal electro-magnetic energy conversion |
This information is part of the Modelica Standard Library maintained by the Modelica Association.
The electro-magnetic energy conversion is given by Ampere's law and Faraday's law respectively:
V_m = i * N N * dΦ/dt = -v
V_m is the magnetomotive force that is supplied to the connected magnetic circuit, Φ is the magnetic flux through the associated branch of this magnetic circuit. The negative sign of the induced voltage v is due to Lenz's law.
The flux linkage Ψ and the static inductance L_stat = |Ψ/i| are calculated for information only. Note that L_stat is set to |Ψ/eps| if |i| < eps (= 100*Modelica.Constants.eps).
N |
Value: 1 Type: Real Description: Number of turns |
---|
port_p |
Type: PositiveMagneticPort Description: Positive magnetic port |
|
---|---|---|
port_n |
Type: NegativeMagneticPort Description: Negative magnetic port |
|
p |
Type: PositivePin Description: Positive electrical pin |
|
n |
Type: NegativePin Description: Negative electrical pin |
Modelica.Magnetic.FluxTubes.Examples Inductor with saturation in the ferromagnetic core |
|
Modelica.Magnetic.QuasiStatic.FluxTubes.Examples Linear inductor with ferromagnetic core |
|
Modelica.Magnetic.QuasiStatic.FluxTubes.Examples Non linear inductor with ferromagnetic core |
Modelica.Magnetic.FluxTubes.Examples.MovingCoilActuator.Components Detailed actuator model for rough magnetic design of actuator and system simulation |
|
Modelica.Magnetic.FluxTubes.Examples.SolenoidActuator.Components Simple network model of a lifting magnet with planar armature end face |
|
Modelica.Magnetic.FluxTubes.Examples.SolenoidActuator.Components Advanced network model of a lifting magnet with planar armature end face, split magnetomotive force |