| quantileQuantile of truncated Weibull distribution |  | 
This information is part of the Modelica Standard Library maintained by the Modelica Association.
Weibull.quantile(u, y_min=0, y_max=1, lambda=1, k=1);
This function computes the inverse cumulative distribution function (= quantile) according to a truncated Weibull distribution with minimum value u_min, maximum value u_max, scale parameter of original distribution lambda and shape parameter of original distribution k. Input argument u must be in the range:
0 ≤ u ≤ 1
Output argument y is in the range:
y_min ≤ y ≤ y_max
Plot of the function:
For more details
of the Weibull distribution, see
Wikipedia,
of truncated distributions, see
Wikipedia.
quantile(0.001) // = 0.0006323204312624211; quantile(0.5,0,1,0.5,0.9) // = 0.256951787882498
| u | Type: Real Description: Random number in the range 0 <= u <= 1 | 
|---|---|
| y_min | Default Value: 0 Type: Real Description: Lower limit of y | 
| y_max | Default Value: 1 Type: Real Description: Upper limit of y | 
| lambda | Default Value: 1 Type: Real Description: Scale parameter of the Weibull distribution | 
| k | Type: Real Description: Shape parameter of the Weibull distribution | 
| y | Type: Real Description: Random number u transformed according to the given distribution | 
|---|