dgehrd

reduces a real general matrix A to upper Hessenberg form H by an orthogonal similarity transformation: Q' * A * Q = H

Information

This information is part of the Modelica Standard Library maintained by the Modelica Association.

Lapack documentation
    Purpose
    =======

    DGEHRD reduces a real general matrix A to upper Hessenberg form H by
    an orthogonal similarity transformation:  Q' * A * Q = H .

    Arguments
    =========

    N       (input) INTEGER
            The order of the matrix A.  N >= 0.

    ILO     (input) INTEGER
    IHI     (input) INTEGER
            It is assumed that A is already upper triangular in rows
            and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally
            set by a previous call to DGEBAL; otherwise they should be
            set to 1 and N respectively. See Further Details.
            1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.

    A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
            On entry, the N-by-N general matrix to be reduced.
            On exit, the upper triangle and the first subdiagonal of A
            are overwritten with the upper Hessenberg matrix H, and the
            elements below the first subdiagonal, with the array TAU,
            represent the orthogonal matrix Q as a product of elementary
            reflectors. See Further Details.

    LDA     (input) INTEGER
            The leading dimension of the array A.  LDA >= max(1,N).

    TAU     (output) DOUBLE PRECISION array, dimension (N-1)
            The scalar factors of the elementary reflectors (see Further
            Details). Elements 1:ILO-1 and IHI:N-1 of TAU are set to
            zero.

    WORK    (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
            On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

    LWORK   (input) INTEGER
            The length of the array WORK.  LWORK >= max(1,N).
            For optimum performance LWORK >= N*NB, where NB is the
            optimal blocksize.

            If LWORK = -1, then a workspace query is assumed; the routine
            only calculates the optimal size of the WORK array, returns
            this value as the first entry of the WORK array, and no error
            message related to LWORK is issued by XERBLA.

    INFO    (output) INTEGER
            = 0:  successful exit
            < 0:  if INFO = -i, the i-th argument had an illegal value.

    Further Details
    ===============

    The matrix Q is represented as a product of (ihi-ilo) elementary
    reflectors

       Q = H(ilo) H(ilo+1) . . . H(ihi-1).

    Each H(i) has the form

       H(i) = I - tau * v * v'

    where tau is a real scalar, and v is a real vector with
    v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi) is stored on
    exit in A(i+2:ihi,i), and tau in TAU(i).

    The contents of A are illustrated by the following example, with
    n = 7, ilo = 2 and ihi = 6:

    on entry,                        on exit,

    ( a   a   a   a   a   a   a )    (  a   a   h   h   h   h   a )
    (     a   a   a   a   a   a )    (      a   h   h   h   h   a )
    (     a   a   a   a   a   a )    (      h   h   h   h   h   h )
    (     a   a   a   a   a   a )    (      v2  h   h   h   h   h )
    (     a   a   a   a   a   a )    (      v2  v3  h   h   h   h )
    (     a   a   a   a   a   a )    (      v2  v3  v4  h   h   h )
    (                         a )    (                          a )

    where a denotes an element of the original matrix A, h denotes a
    modified element of the upper Hessenberg matrix H, and vi denotes an
    element of the vector defining H(i).

Syntax

(Aout, tau, info) = dgehrd(A, ilo, ihi)

Inputs (3)

A

Type: Real[:,size(A, 1)]

ilo

Default Value: 1

Type: Integer

Description: lowest index where the original matrix had been Hessenbergform

ihi

Default Value: size(A, 1)

Type: Integer

Description: highest index where the original matrix had been Hessenbergform

Outputs (3)

Aout

Default Value: A

Type: Real[size(A, 1),size(A, 2)]

Description: contains the Hessenberg form in the upper triangle and the first subdiagonal and below the first subdiagonal it contains the elementary reflectors which represents (with array tau) as a product the orthogonal matrix Q

tau

Type: Real[max(size(A, 1), 1) - 1]

Description: scalar factors of the elementary reflectors

info

Type: Integer