Modelica.Electrical.Analog.Semiconductors

Semiconductor devices such as diode, MOS and bipolar transistor

Information

This package contains semiconductor devices:

Most of the semiconductor devices contain a conditional heat port, which is not active by default. If it is active the loss power is calculated to be used in a thermal net. The heating variants of the semiconductor devices are provided to use the thermal port temperature in the electric calculation. That means that for a true thermal electric interaction the heating device models have to be used.

Extends from Modelica.Icons.Package (Icon for standard packages).

Package Content

Name Description
Modelica.Electrical.Analog.Semiconductors.Diode Diode Simple diode with heating port
Modelica.Electrical.Analog.Semiconductors.Diode2 Diode2 Improved diode model
Modelica.Electrical.Analog.Semiconductors.ZDiode ZDiode Zener diode with 3 working areas
Modelica.Electrical.Analog.Semiconductors.NMOS NMOS Simple NMOS transistor with heating port
Modelica.Electrical.Analog.Semiconductors.PMOS PMOS Simple PMOS transistor with heating port
Modelica.Electrical.Analog.Semiconductors.NPN NPN Simple NPN BJT according to Ebers-Moll with heating port
Modelica.Electrical.Analog.Semiconductors.PNP PNP Simple PNP BJT according to Ebers-Moll with heating port
Modelica.Electrical.Analog.Semiconductors.pow pow Just a helper function for x^y in order that a symbolic engine can apply some transformations more easily
Modelica.Electrical.Analog.Semiconductors.powlin powlin Power function (1 - x)^(-y) linearly continued for x > 0 (provided y = const.)
Modelica.Electrical.Analog.Semiconductors.exlin exlin Exponential function linearly continued for x > Maxexp
Modelica.Electrical.Analog.Semiconductors.exlin2 exlin2 Exponential function linearly continued for x < MinExp and x > Maxexp
Modelica.Electrical.Analog.Semiconductors.Thyristor Thyristor Simple Thyristor Model
Modelica.Electrical.Analog.Semiconductors.SimpleTriac SimpleTriac Simple triac, based on Semiconductors.Thyristor model

Modelica.Electrical.Analog.Semiconductors.Diode Modelica.Electrical.Analog.Semiconductors.Diode

Simple diode with heating port

Information

The simple diode is an electrical one port, where a heat port is added, which is defined in the Modelica.Thermal library. It consists of the diode itself and a parallel ohmic resistance R. If useTemperatureDependency is set to true, the diode formula is:

           v/N/vt_t
i = Ids (e          - 1)
where vt_t depends on the temperature of the heat port:
vt_t = k*temp/q

If useTemperatureDependency is set to false, the diode formula utilizes the voltage equivalent of the temperature, i.e.,

           v/Vt
i = Ids (e      - 1).

If the exponent v/N/vt_t or v/Vt, respectively, reaches the limit Maxexp, the diode characteristic is linearly continued to avoid overflow.
The thermal power is calculated by i*v.

Extends from Modelica.Electrical.Analog.Interfaces.OnePort (Component with two electrical pins p and n and current i from p to n), Modelica.Electrical.Analog.Interfaces.ConditionalHeatPort (Partial model to include a conditional HeatPort in order to describe the power loss via a thermal network).

Parameters

NameDescription
IdsSaturation current [A]
useTemperatureDependency= true, if the diode current depends on temperature, otherwise utilizes the voltage equivalent of temperature
VtVoltage equivalent of temperature (kT/qn) [V]
MaxexpMax. exponent for linear continuation
RParallel ohmic resistance [Ohm]
EGActivation energy
NEmission coefficient
TNOMParameter measurement temperature [K]
XTITemperature exponent of saturation current
useHeatPort= true, if heatPort is enabled
TFixed device temperature if useHeatPort = false [K]

Connectors

NameDescription
pPositive electrical pin
nNegative electrical pin
heatPortConditional heat port

Modelica.Electrical.Analog.Semiconductors.Diode2 Modelica.Electrical.Analog.Semiconductors.Diode2

Improved diode model

Information

This diode model is an improved version of the simple diode model. It includes a series resistance, parallel conductance, and also models reverse breakdown. The model is divided into three parts:

Temperature dependent behaviour is modelled when useHeatPort=true. In that case, the Vt parameter is ignored, and Vt is computed as k·T/q, where

Extends from Modelica.Electrical.Analog.Interfaces.OnePort (Component with two electrical pins p and n and current i from p to n), Modelica.Electrical.Analog.Interfaces.ConditionalHeatPort (Partial model to include a conditional HeatPort in order to describe the power loss via a thermal network).

Parameters

NameDescription
useHeatPort= true, if heatPort is enabled
TFixed device temperature if useHeatPort = false [K]
VfForward voltage [V]
IdsReverse saturation current [A]
RsOhmic resistance [Ohm]
VtThermal voltage (kT/q), 0.026 at normal conditions (around 20 degC) [V]
NEmission coefficient
BvReverse breakdown voltage [V]
GpParallel conductance for numerical stability [S]

Connectors

NameDescription
pPositive electrical pin
nNegative electrical pin
heatPortConditional heat port

Modelica.Electrical.Analog.Semiconductors.ZDiode Modelica.Electrical.Analog.Semiconductors.ZDiode

Zener diode with 3 working areas

Information

The simple Zener diode is a one port. It consists of the diode itself and an parallel ohmic resistance R. The diode formula is:

              v/Vt                -(v+Bv)/(Nbv*Vt)
i  =  Ids ( e      - 1) - Ibv ( e                  ).

If the exponent in one of the two branches reaches the limit Maxexp, the diode characteristic is linearly continued to avoid overflow.


The Zener diode model permits (in contrast to the simple diode model) current in reverse direction if the breakdown voltage Bv (also known Zener knee voltage) is exceeded.

The thermal power is calculated by i*v.

Please note: In case of useHeatPort=true the temperature dependence of the electrical behavior is not modelled yet. The parameters are not temperature dependent.

Extends from Modelica.Electrical.Analog.Interfaces.OnePort (Component with two electrical pins p and n and current i from p to n), Modelica.Electrical.Analog.Interfaces.ConditionalHeatPort (Partial model to include a conditional HeatPort in order to describe the power loss via a thermal network).

Parameters

NameDescription
IdsSaturation current [A]
VtVoltage equivalent of temperature (kT/qn) [V]
MaxexpMax. exponent for linear continuation
RParallel ohmic resistance [Ohm]
BvBreakthrough voltage = Zener- or Z-voltage [V]
IbvBreakthrough knee current [A]
NbvBreakthrough emission coefficient
useHeatPort= true, if heatPort is enabled
TFixed device temperature if useHeatPort = false [K]

Connectors

NameDescription
pPositive electrical pin
nNegative electrical pin
heatPortConditional heat port

Modelica.Electrical.Analog.Semiconductors.NMOS Modelica.Electrical.Analog.Semiconductors.NMOS

Simple NMOS transistor with heating port

Information

The NMOS model is a simple model of a n-channel metal-oxide semiconductor FET. It differs slightly from the device used in the SPICE simulator. For more details please care for [Spiro1990].
A heating port is added for thermal electric simulation. The heating port is defined in the Modelica.Thermal library.
The model does not consider capacitances. A high drain-source resistance RDS is included to avoid numerical difficulties.

W       L      Beta         Vt      K2     K5       dW       dL
m       m      A/V^2        V       -      -        m        m
12.e-6  4.e-6  0.062e-3    -4.5     0.24   0.61    -1.2e-6  -0.9e-6      depletion
60.e-6  3.e-6  0.048e-3     0.1     0.08   0.68    -1.2e-6  -0.9e-6      enhancement
12.e-6  4.e-6  0.0625e-3   -0.8     0.21   0.78    -1.2e-6  -0.9e-6      zero
50.e-6  8.e-6  0.0299e-3    0.24    1.144  0.7311  -5.4e-6  -4.e-6
20.e-6  6.e-6  0.041e-3     0.8     1.144  0.7311  -2.5e-6  -1.5e-6
30.e-6  9.e-6  0.025e-3    -4.0     0.861  0.878   -3.4e-6  -1.74e-6
30.e-6  5.e-6  0.031e-3     0.6     1.5    0.72     0       -3.9e-6
50.e-6  6.e-6  0.0414e-3   -3.8     0.34   0.8     -1.6e-6  -2.e-6       depletion
50.e-6  5.e-6  0.03e-3      0.37    0.23   0.86    -1.6e-6  -2.e-6       enhancement
50.e-6  6.e-6  0.038e-3    -0.9     0.23   0.707   -1.6e-6  -2.e-6       zero
20.e-6  4.e-6  0.06776e-3   0.5409  0.065  0.71    -0.8e-6  -0.2e-6
20.e-6  4.e-6  0.06505e-3   0.6209  0.065  0.71    -0.8e-6  -0.2e-6
20.e-6  4.e-6  0.05365e-3   0.6909  0.03   0.8     -0.3e-6  -0.2e-6
20.e-6  4.e-6  0.05365e-3   0.4909  0.03   0.8     -0.3e-6  -0.2e-6
12.e-6  4.e-6  0.023e-3    -4.5     0.29   0.6      0        0           depletion
60.e-6  3.e-6  0.022e-3     0.1     0.11   0.65     0        0           enhancement
12.e-6  4.e-6  0.038e-3    -0.8     0.33   0.6      0        0           zero
20.e-6  6.e-6  0.022e-3     0.8     1      0.66     0        0

References: [Spiro1990]

Extends from Modelica.Electrical.Analog.Interfaces.ConditionalHeatPort (Partial model to include a conditional HeatPort in order to describe the power loss via a thermal network).

Parameters

NameDescription
WWidth [m]
LLength [m]
BetaTransconductance parameter [A/V2]
VtZero bias threshold voltage [V]
K2Bulk threshold parameter
K5Reduction of pinch-off region
dWNarrowing of channel [m]
dLShortening of channel [m]
RDSDrain-Source-Resistance [Ohm]
useTemperatureDependency= true, if parameters Beta, K2 and Vt depend on temperature
TnomParameter measurement temperature [K]
kvtFitting parameter for Vt
kk2Fitting parameter for K2
useHeatPort= true, if heatPort is enabled
TFixed device temperature if useHeatPort = false [K]

Connectors

NameDescription
DDrain
GGate
SSource
BBulk
heatPortConditional heat port

Modelica.Electrical.Analog.Semiconductors.PMOS Modelica.Electrical.Analog.Semiconductors.PMOS

Simple PMOS transistor with heating port

Information

The PMOS model is a simple model of a p-channel metal-oxide semiconductor FET. It differs slightly from the device used in the SPICE simulator. For more details please care for [Spiro1990].
A heating port is added for thermal electric simulation. The heating port is defined in the Modelica.Thermal library.
The model does not consider capacitances. A high drain-source resistance RDS is included to avoid numerical difficulties.

References: [Spiro1990]

Some typical parameter sets are:

W       L      Beta        Vt    K2     K5      dW       dL
m       m      A/V^2       V     -      -       m        m
50.e-6  8.e-6  0.0085e-3  -0.15  0.41   0.839  -3.8e-6  -4.0e-6
20.e-6  6.e-6  0.0105e-3  -1.0   0.41   0.839  -2.5e-6  -2.1e-6
30.e-6  5.e-6  0.0059e-3  -0.3   0.98   1.01    0       -3.9e-6
30.e-6  5.e-6  0.0152e-3  -0.69  0.104  1.1    -0.8e-6  -0.4e-6
30.e-6  5.e-6  0.0163e-3  -0.69  0.104  1.1    -0.8e-6  -0.4e-6
30.e-6  5.e-6  0.0182e-3  -0.69  0.086  1.06   -0.1e-6  -0.6e-6
20.e-6  6.e-6  0.0074e-3  -1.    0.4    0.59    0        0

Extends from Modelica.Electrical.Analog.Interfaces.ConditionalHeatPort (Partial model to include a conditional HeatPort in order to describe the power loss via a thermal network).

Parameters

NameDescription
WWidth [m]
LLength [m]
BetaTransconductance parameter [A/V2]
VtZero bias threshold voltage [V]
K2Bulk threshold parameter
K5Reduction of pinch-off region
dWNarrowing of channel [m]
dLShortening of channel [m]
RDSDrain-Source-Resistance [Ohm]
useTemperatureDependency= true, if parameters Beta, K2 and Vt depend on temperature
TnomParameter measurement temperature [K]
kvtFitting parameter for Vt
kk2Fitting parameter for K2
useHeatPort= true, if heatPort is enabled
TFixed device temperature if useHeatPort = false [K]

Connectors

NameDescription
DDrain
GGate
SSource
BBulk
heatPortConditional heat port

Modelica.Electrical.Analog.Semiconductors.NPN Modelica.Electrical.Analog.Semiconductors.NPN

Simple NPN BJT according to Ebers-Moll with heating port

Information

This model is a simple model of a bipolar NPN junction transistor according to Ebers-Moll.
A heating port is added for thermal electric simulation. The heating port is defined in the Modelica.Thermal library.
A typical parameter set is (the parameter Vt is no longer used):

Bf  Br  Is     Vak  Tauf    Taur  Ccs   Cje     Cjc     Phie  Me   PHic   Mc     Gbc    Gbe
-   -   A      V    s       s     F     F       F       V     -    V      -      mS     mS
50  0.1 1e-16  0.02 0.12e-9 5e-9  1e-12 0.4e-12 0.5e-12 0.8   0.4  0.8    0.333  1e-15  1e-15

References: [Vlach1983]

Extends from Modelica.Electrical.Analog.Interfaces.ConditionalHeatPort (Partial model to include a conditional HeatPort in order to describe the power loss via a thermal network).

Parameters

NameDescription
BfForward beta
BrReverse beta
IsTransport saturation current [A]
VakEarly voltage (inverse), 1/Volt [1/V]
TaufIdeal forward transit time [s]
TaurIdeal reverse transit time [s]
CcsCollector-substrate(ground) cap. [F]
CjeBase-emitter zero bias depletion cap. [F]
CjcBase-coll. zero bias depletion cap. [F]
PhieBase-emitter diffusion voltage [V]
MeBase-emitter gradation exponent
PhicBase-collector diffusion voltage [V]
McBase-collector gradation exponent
GbcBase-collector conductance [S]
GbeBase-emitter conductance [S]
EMinIf x < EMin, the exp(x) function is linearized
EMaxIf x > EMax, the exp(x) function is linearized
useTemperatureDependency= true, if parameters Bf, Br, Is and Vt depend on temperature
VtVoltage equivalent of temperature [V]
TnomParameter measurement temperature [K]
XTITemperature exponent for effect on Is
XTBForward and reverse beta temperature exponent
EGEnergy gap for temperature effect on Is [V]
NFForward current emission coefficient
NRReverse current emission coefficient
ICInitial value of collector to substrate voltage [V]
UICDecision if initial value IC should be used
useSubstrate= false, if substrate is implicitly grounded
useHeatPort= true, if heatPort is enabled
TFixed device temperature if useHeatPort = false [K]

Connectors

NameDescription
heatPortConditional heat port
CCollector
BBase
EEmitter
SSubstrate

Modelica.Electrical.Analog.Semiconductors.PNP Modelica.Electrical.Analog.Semiconductors.PNP

Simple PNP BJT according to Ebers-Moll with heating port

Information

This model is a simple model of a bipolar PNP junction transistor according to Ebers-Moll.
A heating port is added for thermal electric simulation. The heating port is defined in the Modelica.Thermal library.
A typical parameter set is (the parameter Vt is no longer used):

Bf  Br  Is     Vak  Tauf    Taur  Ccs   Cje     Cjc     Phie  Me   PHic   Mc     Gbc    Gbe
-   -   A      V    s       s     F     F       F       V     -    V      -      mS     mS
50  0.1 1e-16  0.02 0.12e-9 5e-9  1e-12 0.4e-12 0.5e-12 0.8   0.4  0.8    0.333  1e-15  1e-15

References: [Vlach1983]

Extends from Modelica.Electrical.Analog.Interfaces.ConditionalHeatPort (Partial model to include a conditional HeatPort in order to describe the power loss via a thermal network).

Parameters

NameDescription
BfForward beta
BrReverse beta
IsTransport saturation current [A]
VakEarly voltage (inverse), 1/Volt [1/V]
TaufIdeal forward transit time [s]
TaurIdeal reverse transit time [s]
CcsCollector-substrate(ground) cap. [F]
CjeBase-emitter zero bias depletion cap. [F]
CjcBase-coll. zero bias depletion cap. [F]
PhieBase-emitter diffusion voltage [V]
MeBase-emitter gradation exponent
PhicBase-collector diffusion voltage [V]
McBase-collector gradation exponent
GbcBase-collector conductance [S]
GbeBase-emitter conductance [S]
EMinIf x < EMin, the exp(x) function is linearized
EMaxIf x > EMax, the exp(x) function is linearized
useTemperatureDependency= true, if parameters Bf, Br, Is and Vt depend on temperature
VtVoltage equivalent of temperature [V]
TnomParameter measurement temperature [K]
XTITemperature exponent for effect on Is
XTBForward and reverse beta temperature exponent
EGEnergy gap for temperature effect on Is [V]
NFForward current emission coefficient
NRReverse current emission coefficient
ICInitial value of collector to substrate voltage [V]
UICDecision if initial value IC should be used
useSubstrate= false, if substrate is implicitly grounded
useHeatPort= true, if heatPort is enabled
TFixed device temperature if useHeatPort = false [K]

Connectors

NameDescription
heatPortConditional heat port
CCollector
BBase
EEmitter
SSubstrate

Modelica.Electrical.Analog.Semiconductors.pow Modelica.Electrical.Analog.Semiconductors.pow

Just a helper function for x^y in order that a symbolic engine can apply some transformations more easily

Information

Extends from Modelica.Icons.Function (Icon for functions).

Inputs

NameDescription
x 
y 

Outputs

NameDescription
z 

Modelica.Electrical.Analog.Semiconductors.powlin Modelica.Electrical.Analog.Semiconductors.powlin

Power function (1 - x)^(-y) linearly continued for x > 0 (provided y = const.)

Information

Extends from Modelica.Icons.Function (Icon for functions).

Inputs

NameDescription
x 
y 

Outputs

NameDescription
z 

Modelica.Electrical.Analog.Semiconductors.exlin Modelica.Electrical.Analog.Semiconductors.exlin

Exponential function linearly continued for x > Maxexp

Information

Extends from Modelica.Icons.Function (Icon for functions).

Inputs

NameDescription
x 
Maxexp 

Outputs

NameDescription
z 

Modelica.Electrical.Analog.Semiconductors.exlin2 Modelica.Electrical.Analog.Semiconductors.exlin2

Exponential function linearly continued for x < MinExp and x > Maxexp

Information

Extends from Modelica.Icons.Function (Icon for functions).

Inputs

NameDescription
x 
Minexp 
Maxexp 

Outputs

NameDescription
z 

Modelica.Electrical.Analog.Semiconductors.Thyristor Modelica.Electrical.Analog.Semiconductors.Thyristor

Simple Thyristor Model

Information

This is a simple thyristor model with three pins: Anode, Cathode and Gate. There are three operating modes:conducting, blocking and reverse breakthrough.
As long as the thyristor is in blocking mode it behaves like a linear resistance Roff=VDRM^2/(VTM*IH). But if the voltage between anode and cathode exceeds VDRM or a positive gate current flows for a sufficient time the mode changes to conducting mode. The model stays in conducting mode until the anode current falls below the holding current IH. There is no way to switch off the thyristor via the gate. If the voltage between anode and cathode is negative, the model represents a diode (parameters Vt, Nbv) with reverse breakthrough voltage VRRM.

Thyristor.png

The dV/dt switch on is not taken into account in this model. The gate circuit is not influenced by the main circuit.

Extends from Modelica.Electrical.Analog.Interfaces.ConditionalHeatPort (Partial model to include a conditional HeatPort in order to describe the power loss via a thermal network).

Parameters

NameDescription
VDRMForward breakthrough voltage [V]
VRRMReverse breakthrough voltage [V]
IDRMSaturation current [A]
VTMConducting voltage [V]
IHHolding current [A]
ITMConducting current [A]
VGTGate trigger voltage [V]
IGTGate trigger current [A]
TONSwitch on time [s]
TOFFSwitch off time [s]
VtVoltage equivalent of temperature (kT/qn) [V]
NbvReverse Breakthrough emission coefficient
useHeatPort= true, if heatPort is enabled
TFixed device temperature if useHeatPort = false [K]

Connectors

NameDescription
heatPortConditional heat port
Anode 
Cathode 
Gate 

Modelica.Electrical.Analog.Semiconductors.SimpleTriac Modelica.Electrical.Analog.Semiconductors.SimpleTriac

Simple triac, based on Semiconductors.Thyristor model

Information

This is a simple TRIAC model based on the extended thyristor model Modelica.Electrical.Analog.Semiconductors.Thyristor.
Two thyristors are contrarily connected in parallel, whereas each transistor is connected with a diode.
Further information regarding the electrical component TRIAC can be detected in documentation of the ideal TRIAC model.
As an additional information: this model is based on the Modelica.Electrical.Analog.Semiconductors.Thyristor.

Attention: The model seems to be very sensitive with respect to the choice of some parameters (e.g., VDRM, VRRM). This is caused by the thyristor model. Further investigations are necessary.

Extends from Modelica.Electrical.Analog.Interfaces.ConditionalHeatPort (Partial model to include a conditional HeatPort in order to describe the power loss via a thermal network).

Parameters

NameDescription
VDRMForward breakthrough voltage [V]
VRRMReverse breakthrough voltage [V]
IDRMSaturation current [A]
VTMConducting voltage [V]
IHHolding current [A]
ITMConducting current [A]
VGTGate trigger voltage [V]
IGTGate trigger current [A]
TONSwitch on time [s]
TOFFSwitch off time [s]
VtVoltage equivalent of temperature (kT/qn) [V]
NbvReverse Breakthrough emission coefficient
useHeatPort= true, if heatPort is enabled
TFixed device temperature if useHeatPort = false [K]

Connectors

NameDescription
nCathode
pAnode
gGate
heatPortConditional heat port
Automatically generated Thu Oct 1 16:07:38 2020.