Modelica.Electrical.Machines.Examples.SynchronousMachines

Test examples of synchronous machines

Information

This package contains test examples of synchronous machines.

Extends from Modelica.Icons.ExamplesPackage (Icon for packages containing runnable examples).

Package Content

Name Description
Modelica.Electrical.Machines.Examples.SynchronousMachines.SMR_DOL SMR_DOL Test example: SynchronousMachineReluctanceRotor direct-on-line
Modelica.Electrical.Machines.Examples.SynchronousMachines.SMR_Inverter SMR_Inverter Test example: SynchronousMachineReluctanceRotor with inverter
Modelica.Electrical.Machines.Examples.SynchronousMachines.SMPM_NoLoad SMPM_NoLoad SMPM at no-load
Modelica.Electrical.Machines.Examples.SynchronousMachines.SMPM_Inverter SMPM_Inverter Test example: PermanentMagnetSynchronousMachine with inverter
Modelica.Electrical.Machines.Examples.SynchronousMachines.SMPM_CurrentSource SMPM_CurrentSource Test example: PermanentMagnetSynchronousMachine fed by current source
Modelica.Electrical.Machines.Examples.SynchronousMachines.SMPM_VoltageSource SMPM_VoltageSource Test example: PermanentMagnetSynchronousMachine fed by FOC
Modelica.Electrical.Machines.Examples.SynchronousMachines.SMPM_Braking SMPM_Braking Test example: PermanentMagnetSynchronousMachine acting as brake
Modelica.Electrical.Machines.Examples.SynchronousMachines.SMPM_ResistiveBraking SMPM_ResistiveBraking PermanentMagnetSynchronousMachine braking with a resistor
Modelica.Electrical.Machines.Examples.SynchronousMachines.SMEE_DOL SMEE_DOL Test example: ElectricalExcitedSynchronousMachine starting direct on line
Modelica.Electrical.Machines.Examples.SynchronousMachines.SMEE_Generator SMEE_Generator Test example: ElectricalExcitedSynchronousMachine as Generator
Modelica.Electrical.Machines.Examples.SynchronousMachines.SMEE_LoadDump SMEE_LoadDump Test example: ElectricalExcitedSynchronousMachine with voltage controller
Modelica.Electrical.Machines.Examples.SynchronousMachines.SMEE_Rectifier SMEE_Rectifier Test example: ElectricalExcitedSynchronousMachine with rectifier

Modelica.Electrical.Machines.Examples.SynchronousMachines.SMR_DOL Modelica.Electrical.Machines.Examples.SynchronousMachines.SMR_DOL

Test example: SynchronousMachineReluctanceRotor direct-on-line

Information

Test example: Synchronous machine with reluctance rotor direct on line
A synchronous machine with reluctance rotor starts direct on line, utilizing the damper cage.
After reaching synchronous speed, at time tStep a load step is applied.
Simulate for 2.5 seconds and plot (versus time): Default machine parameters of model SM_ReluctanceRotor are used.

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

NameDescription
VNominalNominal RMS voltage per phase [V]
fNominalNominal frequency [Hz]
fActual frequency [Hz]
tStart1Switch-on time [s]
TLoadNominal load torque [N.m]
tStepTime of load torque step [s]
JLoadLoad's moment of inertia [kg.m2]
smrDataSynchronous machine data

Modelica.Electrical.Machines.Examples.SynchronousMachines.SMR_Inverter Modelica.Electrical.Machines.Examples.SynchronousMachines.SMR_Inverter

Test example: SynchronousMachineReluctanceRotor with inverter

Information

An ideal frequency inverter is modeled by using a VfController and a three-phase SignalVoltage. Frequency is raised by a ramp, causing the reluctance machine to start, and accelerating inertias. At time tStep a load step is applied.

Simulate for 1.5 seconds and plot (versus time):

Default machine parameters are used.

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

NameDescription
VNominalNominal RMS voltage per phase [V]
fNominalNominal frequency [Hz]
fActual frequency [Hz]
tRampFrequency ramp [s]
TLoadNominal load torque [N.m]
tStepTime of load torque step [s]
JLoadLoad's moment of inertia [kg.m2]
smrDataSynchronous machine data

Modelica.Electrical.Machines.Examples.SynchronousMachines.SMPM_NoLoad Modelica.Electrical.Machines.Examples.SynchronousMachines.SMPM_NoLoad

SMPM at no-load

Information

Synchronous machine with permanent magnets at no-load, driven with constant nominal speed.

You may check the terminal voltage = VsOpenCircuit (shown by the length of the space phasor) and the frequency = fsNominal.

Additionally, you may check the phase shift of the stator voltages with respect to the mechanical shaft angle:

Note that the angle of the voltage space phasor is pi/2 behind the angle of the hall sensor, i.e. after a rotation of the shaft by pi/2/p the flux linkage of phase 1 is zero and the induced voltage a maximum.

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

NameDescription
smpmDataSynchronous machine data

Modelica.Electrical.Machines.Examples.SynchronousMachines.SMPM_Inverter Modelica.Electrical.Machines.Examples.SynchronousMachines.SMPM_Inverter

Test example: PermanentMagnetSynchronousMachine with inverter

Information

An ideal frequency inverter is modeled by using a VfController and a three-phase SignalVoltage. Frequency is raised by a ramp, causing the permanent magnet synchronous machine to start, and accelerating inertias. At time tStep a load step is applied.

Simulate for 1.5 seconds and plot (versus time):

Default machine parameters are used.

In practice it is nearly impossible to drive a PMSMD without current controller.

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

NameDescription
VNominalNominal RMS voltage per phase [V]
fNominalNominal frequency [Hz]
fActual frequency [Hz]
tRampFrequency ramp [s]
TLoadNominal load torque [N.m]
tStepTime of load torque step [s]
JLoadLoad's moment of inertia [kg.m2]
smpmDataSynchronous machine data

Modelica.Electrical.Machines.Examples.SynchronousMachines.SMPM_CurrentSource Modelica.Electrical.Machines.Examples.SynchronousMachines.SMPM_CurrentSource

Test example: PermanentMagnetSynchronousMachine fed by current source

Information

A synchronous machine with permanent magnets accelerates a quadratic speed dependent load from standstill. The rms values of d- and q-current in rotor fixed coordinate system are converted to three-phase currents, and fed to the machine. The result shows that the torque is influenced by the q-current, whereas the stator voltage is influenced by the d-current.

Default machine parameters are used.

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

NameDescription
Idq[2]Desired d- and q-current [A]
wNominalNominal speed [rad/s]
TLoadNominal load torque [N.m]
JLoadLoad's moment of inertia [kg.m2]
smpmDataSynchronous machine data

Modelica.Electrical.Machines.Examples.SynchronousMachines.SMPM_VoltageSource Modelica.Electrical.Machines.Examples.SynchronousMachines.SMPM_VoltageSource

Test example: PermanentMagnetSynchronousMachine fed by FOC

Information

A synchronous machine with permanent magnets accelerates a quadratic speed dependent load from standstill. The rms values of d- and q-current in rotor fixed coordinate system are controlled by the dqCurrentController, and the output voltages fed to the machine. The result shows that the torque is influenced by the q-current, whereas the stator voltage is influenced by the d-current.

Default machine parameters are used.

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

NameDescription
Idq[2]Desired d- and q-current [A]
wNominalNominal speed [rad/s]
TLoadNominal load torque [N.m]
JLoadLoad's moment of inertia [kg.m2]
smpmDataSynchronous machine data

Modelica.Electrical.Machines.Examples.SynchronousMachines.SMPM_Braking Modelica.Electrical.Machines.Examples.SynchronousMachines.SMPM_Braking

Test example: PermanentMagnetSynchronousMachine acting as brake

Information

A synchronous machine with permanent magnets starts braking from nominal speed by feeding a diode bridge, which in turn feeds a braking resistor. Since induced voltage is reduced proportional to falling speed, the braking resistance is set proportional to speed to achieve constant current and torque.

Default machine parameters are used.

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

NameDescription
RNominal braking resistance [Ohm]
wNominalNominal speed [rad/s]
JLoadLoad's moment of inertia [kg.m2]
smpmDataSynchronous machine data

Modelica.Electrical.Machines.Examples.SynchronousMachines.SMPM_ResistiveBraking Modelica.Electrical.Machines.Examples.SynchronousMachines.SMPM_ResistiveBraking

PermanentMagnetSynchronousMachine braking with a resistor

Information

The voltages induced by the permanent magnets of the synchronous machine is shortened over the inductance and resistance of the stator winding and the (optional) external braking resistors. The currents driven by these voltages cause a braking torque.

The external braking resistor is implemented with three stages which get shortened at different points during braking. Note that the first (smallest) stage is not shortened, which ensures a minimum damping to avoid oscillations of angular velocity around zero. The total braking resistance (sum of all stages) has to be adapted to the angular velocity at which braking starts.

Plot tauElectrical and tauShaft versus wMechanical.

Default machine parameters are used.

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

NameDescription
JLoadLoad's moment of inertia [kg.m2]
w0Initial speed [rad/s]
k[3]Braking resistance stages w.r.t. Rs
idq_sr[2]Initial stator current space phasor [A]
smpmData 

Modelica.Electrical.Machines.Examples.SynchronousMachines.SMEE_DOL Modelica.Electrical.Machines.Examples.SynchronousMachines.SMEE_DOL

Test example: ElectricalExcitedSynchronousMachine starting direct on line

Information

An electrically excited synchronous generator is started direct on line utilizing the damper cage (and the shorted excitation winding) at 0 seconds.

At t = 0.5 seconds, the excitation voltage is raised to achieve the no-load excitation current. Note, that reactive power of the stator goes to zero.

At t = 2 second, a driving torque step is applied to the shaft (i.e. the turbine is activated). Note, that active and reactive power of the stator changes. To drive at higher torque, i.e., produce more electric power, excitation has to be adapted.

Simulate for 3 seconds and plot:

Default machine parameters are used.

Note

The mains switch is closed at time = 0 in order to avoid non physical noise calculated by the rotorDisplacementAngle. This noise is caused by the interaction of the high resistance of the switch and the machine, see #2388.

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

NameDescription
VNominalNominal RMS voltage per phase [V]
fNominalNominal frequency [Hz]
VeExcitation current [V]
gamma0Initial rotor displacement angle [rad]
smeeDataSynchronous machine data

Modelica.Electrical.Machines.Examples.SynchronousMachines.SMEE_Generator Modelica.Electrical.Machines.Examples.SynchronousMachines.SMEE_Generator

Test example: ElectricalExcitedSynchronousMachine as Generator

Information

An electrically excited synchronous generator is connected to the grid and driven with constant speed. Since speed is slightly smaller than synchronous speed corresponding to mains frequency, rotor angle is very slowly increased. This allows to see several characteristics dependent on rotor angle.

Simulate for 30 seconds and plot (versus rotorDisplacementAngle.rotorDisplacementAngle):

Default machine parameters are used.

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

NameDescription
VNominalNominal RMS voltage per phase [V]
fNominalNominal frequency [Hz]
wActualActual speed [rad/s]
IeExcitation current [A]
Ie0Initial excitation current [A]
gamma0Initial rotor displacement angle [rad]
smeeDataSynchronous machine data

Modelica.Electrical.Machines.Examples.SynchronousMachines.SMEE_LoadDump Modelica.Electrical.Machines.Examples.SynchronousMachines.SMEE_LoadDump

Test example: ElectricalExcitedSynchronousMachine with voltage controller

Information

An electrically excited synchronous generator is started with a speed ramp, then driven with constant speed. Voltage is controlled, the set point depends on speed. After start-up the generator is loaded, the load is rejected.

Simulate for 10 seconds and plot:

Default machine parameters are used.

One could try to optimize the controller parameters.

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

NameDescription
wNominalNominal speed [rad/s]
ZNominalNominal load impedance [Ohm]
powerFactorLoad power factor
RLoadLoad resistance [Ohm]
LLoadLoad inductance [H]
Ve0No load excitation voltage [V]
kVoltage controller: gain
TiVoltage controller: integral time constant [s]
smeeDataSynchronous machine data

Modelica.Electrical.Machines.Examples.SynchronousMachines.SMEE_Rectifier Modelica.Electrical.Machines.Examples.SynchronousMachines.SMEE_Rectifier

Test example: ElectricalExcitedSynchronousMachine with rectifier

Information

An electrically excited synchronous generator is driven with constant speed. Voltage is controlled, the set point depends on speed. The generator is loaded with a rectifier.

Default machine parameters are used.

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

NameDescription
wNominalNominal speed [rad/s]
VDC0No-load DC voltage [V]
RLoadLoad resistance [Ohm]
Ve0No load excitation voltage [V]
kVoltage controller: gain
TiVoltage controller: integral time constant [s]
smeeData 
Automatically generated Thu Oct 1 16:07:40 2020.