Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.InductionMachines

Induction machines examples

Information

Extends from Modelica.Icons.ExamplesPackage (Icon for packages containing runnable examples).

Package Content

Name Description
Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.InductionMachines.ComparisonPolyphase ComparisonPolyphase Compare polyphase machines with three-phase machines
Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.InductionMachines.IMC_DOL IMC_DOL Direct on line (DOL) start of induction machine with squirrel cage
Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.InductionMachines.IMC_YD IMC_YD Induction machine with squirrel cage starting Y-D
Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.InductionMachines.IMC_Transformer IMC_Transformer Induction machine with squirrel cage starting with transformer
Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.InductionMachines.IMC_Inverter IMC_Inverter Induction machine with squirrel cage and inverter
Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.InductionMachines.IMC_Conveyor IMC_Conveyor Induction machine with squirrel cage and inverter driving a conveyor
Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.InductionMachines.IMC_Steinmetz IMC_Steinmetz Induction machine with squirrel cage and Steinmetz-connection
Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.InductionMachines.IMC_withLosses IMC_withLosses Induction machine with squirrel cage and losses
Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.InductionMachines.IMC_Initialize IMC_Initialize Steady-state initialization of induction machine with squirrel cage
Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.InductionMachines.IMS_Start IMS_Start Starting of induction machine with slip rings

Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.InductionMachines.IMC_DOL Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.InductionMachines.IMC_DOL

Direct on line (DOL) start of induction machine with squirrel cage

Information

At start time tStart three-phase voltage is supplied to the induction machine with squirrel cage. The machine starts from standstill, accelerating inertias against load torque quadratic dependent on speed, finally reaching nominal speed.

Simulate for 1.5 seconds and plot (versus time):

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

NameDescription
VsNominalNominal RMS voltage per phase [V]
fNominalNominal frequency [Hz]
tOnStart time of machine [s]
T_LoadNominal load torque [N.m]
w_LoadNominal load speed [rad/s]
J_LoadLoad inertia [kg.m2]
pNumber of pole pairs
aimcDataInduction machine data

Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.InductionMachines.IMC_YD Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.InductionMachines.IMC_YD

Induction machine with squirrel cage starting Y-D

Information

At start time tStart three-phase voltage is supplied to the induction machine with squirrel cage, first star-connected, then delta-connected; the machine starts from standstill, accelerating inertias against load torque quadratic dependent on speed, finally reaching nominal speed.

Simulate for 2.5 seconds and plot (versus time):

Default machine parameters are used.

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

NameDescription
VNominalNominal RMS voltage per phase [V]
fNominalNominal frequency [Hz]
tStart1Start time [s]
tStart2Start time from Y to D [s]
TLoadNominal load torque [N.m]
wLoadNominal load speed [rad/s]
JLoadLoad's moment of inertia [kg.m2]
aimcDataInduction machine data

Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.InductionMachines.IMC_Transformer Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.InductionMachines.IMC_Transformer

Induction machine with squirrel cage starting with transformer

Information

At start time tStart1 three-phase voltage is supplied to the induction machine with squirrel cage via the transformer; the machine starts from standstill, accelerating inertias against load torque quadratic dependent on speed; at start time tStart2 the machine is fed directly from the voltage source, finally reaching nominal speed.

Simulate for 2.5 seconds and plot (versus time):

Default machine parameters are used.

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

NameDescription
VNominalNominal RMS voltage per phase [V]
fNominalNominal frequency [Hz]
tStart1Start time [s]
tStart2Start time of bypass transformer [s]
TLoadNominal load torque [N.m]
wLoadNominal load speed [rad/s]
JLoadLoad's moment of inertia [kg.m2]
transformerDataTransformer data
aimcDataInduction machine data

Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.InductionMachines.IMC_Inverter Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.InductionMachines.IMC_Inverter

Induction machine with squirrel cage and inverter

Information

An ideal frequency inverter is modeled by using a VfController and a three-phase SignalVoltage. Frequency is raised by a ramp, causing the induction machine with squirrel cage to start, and accelerating inertias. At time tStep a load step is applied.

Simulate for 1.5 seconds and plot (versus time):

Default machine parameters are used.

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

NameDescription
VNominalNominal RMS voltage per phase [V]
fNominalNominal frequency [Hz]
fMaximum operational frequency [Hz]
tRampFrequency ramp [s]
TLoadNominal load torque [N.m]
tStepTime of load torque step [s]
JLoadLoad's moment of inertia [kg.m2]
aimcDataInduction machine data

Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.InductionMachines.IMC_Conveyor Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.InductionMachines.IMC_Conveyor

Induction machine with squirrel cage and inverter driving a conveyor

Information

An ideal frequency inverter is modeled by using a VfController and a three-phase SignalVoltage. Frequency is driven by a load cycle of acceleration, constant speed, deceleration and standstill. The mechanical load is a constant torque like a conveyor (with regularization around zero speed).

Simulate for 20 seconds and plot (versus time):

Default machine parameters are used.

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

NameDescription
VNominalNominal RMS voltage per phase [V]
fNominalNominal frequency [Hz]
wNominalNominal speed [rad/s]
TLoadNominal load torque [N.m]
JLoadLoad's moment of inertia [kg.m2]
rTransmission radius [m]
aimcDataInduction machine data

Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.InductionMachines.IMC_Steinmetz Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.InductionMachines.IMC_Steinmetz

Induction machine with squirrel cage and Steinmetz-connection

Information

At start time tStart single-phase voltage is supplied to the induction machine with squirrel cage; the machine starts from standstill, accelerating inertias against load torque quadratic dependent on speed, finally reaching nominal speed.

Default machine parameters are used.

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

NameDescription
VNominalNominal RMS voltage per phase [V]
fNominalNominal frequency [Hz]
tStart1Start time [s]
CrMotor's running capacitor [F]
CsMotor's (additional) starting capacitor [F]
wSwitchSpeed for switching off the starting capacitor [rad/s]
TLoadNominal load torque [N.m]
wLoadNominal load speed [rad/s]
JLoadLoad's moment of inertia [kg.m2]
aimcDataInduction machine data

Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.InductionMachines.IMC_withLosses Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.InductionMachines.IMC_withLosses

Induction machine with squirrel cage and losses

Information

Current I_sim I_meas
Speed w_sim w_meas
Power factor pf_sim pf_meas
Efficiency eff_sim eff_meas

Machine parameters are taken from a standard 18.5 kW 400 V 50 Hz motor, simulation results are compared with measurements.

Nominal stator current 32.85 A
Power factor 0.898
Speed 1462.5 rpm
Electrical input 20,443.95 W
Stator copper losses 770.13 W
Stator core losses 410.00 W
Rotor copper losses 481.60 W
Stray load losses 102.22 W
Friction losses 180.00 W
Mechanical output 18,500.00 W
Efficiency 90.49 %
Nominal torque 120.79 Nm

Stator resistance per phase 0.56 Ω
Temperature coefficient copper
Reference temperature 20 °C
Operation temperature 90 °C
Stator leakage reactance at 50 Hz 1.52 Ω
Main field reactance at 50 Hz 66.40 Ω
Rotor leakage reactance at 50 Hz 2.31 Ω
Rotor resistance per phase 0.42 Ω
Temperature coefficient aluminium
Reference temperature 20 °C
Operation temperature 90 °C

See:
Anton Haumer, Christian Kral, Hansjörg Kapeller, Thomas Bäuml, Johannes V. Gragger
The AdvancedMachines Library: Loss Models for Electric Machines
Modelica 2009, 7th International Modelica Conference

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

NameDescription
aimcDataInduction machine data

Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.InductionMachines.IMC_Initialize Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.InductionMachines.IMC_Initialize

Steady-state initialization of induction machine with squirrel cage

Information

The induction machine with squirrel cage is initialized in steady-state at no-load; at time tStart a load torque step is applied.

Simulate for 1.5 seconds and plot (versus time):

Default machine parameters are used.

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

NameDescription
VNominalNominal RMS voltage per phase [V]
fNominalNominal frequency [Hz]
wSyncSynchronous speed [rad/s]
tStartStart time [s]
TLoadNominal load torque [N.m]
wLoadNominal load speed [rad/s]
JLoadLoad's moment of inertia [kg.m2]
aimcDataInduction machine data

Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.InductionMachines.IMS_Start Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.InductionMachines.IMS_Start

Starting of induction machine with slip rings

Information

At start time tOn three-phase voltage is supplied to the induction machine with sliprings. The machine starts from standstill, accelerating inertias against load torque quadratic dependent on speed, using a starting resistance. At time tRheostat external rotor resistance is shortened, finally reaching nominal speed.

Simulate for 1.5 seconds and plot (versus time):

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

NameDescription
VsNominalNominal RMS voltage per phase [V]
fNominalNominal frequency [Hz]
tOnStart time of machine [s]
RStartStarting resistance [Ohm]
tRheostatTime of shortening the rheostat [s]
T_LoadNominal load torque [N.m]
w_LoadNominal load speed [rad/s]
J_LoadLoad inertia [kg.m2]
aimsDataInduction machine data
Automatically generated Thu Oct 1 16:07:50 2020.