Modelica.Magnetic.QuasiStatic.FundamentalWave.Examples.BasicMachines.InductionMachines

Induction machine examples

Information

Extends from Modelica.Icons.ExamplesPackage (Icon for packages containing runnable examples).

Package Content

Name Description
Modelica.Magnetic.QuasiStatic.FundamentalWave.Examples.BasicMachines.InductionMachines.IMC_Characteristics IMC_Characteristics Characteristic curves of Induction machine with squirrel cage
Modelica.Magnetic.QuasiStatic.FundamentalWave.Examples.BasicMachines.InductionMachines.IMC_DOL IMC_DOL Induction machine with squirrel cage started directly on line (DOL)
Modelica.Magnetic.QuasiStatic.FundamentalWave.Examples.BasicMachines.InductionMachines.IMC_YD IMC_YD Induction machine with squirrel cage starting Y-D
Modelica.Magnetic.QuasiStatic.FundamentalWave.Examples.BasicMachines.InductionMachines.IMC_Transformer IMC_Transformer Induction machine with squirrel cage starting with transformer
Modelica.Magnetic.QuasiStatic.FundamentalWave.Examples.BasicMachines.InductionMachines.IMC_Conveyor IMC_Conveyor Induction machine with squirrel cage and inverter driving a conveyor
Modelica.Magnetic.QuasiStatic.FundamentalWave.Examples.BasicMachines.InductionMachines.IMC_withLosses IMC_withLosses Induction machine with squirrel cage and losses
Modelica.Magnetic.QuasiStatic.FundamentalWave.Examples.BasicMachines.InductionMachines.IMC_Initialize IMC_Initialize Steady-state initialization of induction machine with squirrel cage
Modelica.Magnetic.QuasiStatic.FundamentalWave.Examples.BasicMachines.InductionMachines.IMS_Characteristics IMS_Characteristics Characteristic curves of induction machine with slip rings
Modelica.Magnetic.QuasiStatic.FundamentalWave.Examples.BasicMachines.InductionMachines.IMS_Start IMS_Start Starting of induction machine with slip rings

Modelica.Magnetic.QuasiStatic.FundamentalWave.Examples.BasicMachines.InductionMachines.IMC_Characteristics Modelica.Magnetic.QuasiStatic.FundamentalWave.Examples.BasicMachines.InductionMachines.IMC_Characteristics

Characteristic curves of Induction machine with squirrel cage

Information

This examples allows the investigation of characteristic curves of quasi-static polyphase induction machines with squirrel cage rotor as a function of rotor speed.

Simulate for 1 second and plot (versus imcQS.wMechanical or perUnitSpeed):

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

NameDescription
mNumber of phases
VsNominalNominal RMS voltage per phase [V]
fNominalNominal frequency [Hz]
w_LoadNominal load speed [rad/s]
pNumber of pole pairs
imcDataInduction machine data

Modelica.Magnetic.QuasiStatic.FundamentalWave.Examples.BasicMachines.InductionMachines.IMC_DOL Modelica.Magnetic.QuasiStatic.FundamentalWave.Examples.BasicMachines.InductionMachines.IMC_DOL

Induction machine with squirrel cage started directly on line (DOL)

Information

This example compares a time transient and a quasi-static model of a polyphase induction machine. At start time tOn a transient and a quasi-static polyphase voltage source are connected to an induction machine. The machine starts from standstill, accelerating inertias against load torque quadratic dependent on speed, finally reaching nominal speed.

Simulate for 1 second and plot (versus time):

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

NameDescription
mNumber of phases
VsNominalNominal RMS voltage per phase [V]
fNominalNominal frequency [Hz]
tOnStart time of machine [s]
T_LoadNominal load torque [N.m]
w_LoadNominal load speed [rad/s]
J_LoadLoad inertia [kg.m2]
pNumber of pole pairs
imcDataInduction machine data

Modelica.Magnetic.QuasiStatic.FundamentalWave.Examples.BasicMachines.InductionMachines.IMC_YD Modelica.Magnetic.QuasiStatic.FundamentalWave.Examples.BasicMachines.InductionMachines.IMC_YD

Induction machine with squirrel cage starting Y-D

Information

At start time tStart three-phase voltage is supplied to the induction machine with squirrel cage, first star-connected, then delta-connected; the machine starts from standstill, accelerating inertias against load torque quadratic dependent on speed, finally reaching nominal speed.

Simulate for 2.5 seconds and plot (versus time):

Default machine parameters are used.

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

NameDescription
VNominalNominal RMS voltage per phase [V]
fNominalNominal frequency [Hz]
tStart1Start time [s]
tStart2Start time from Y to D [s]
TLoadNominal load torque [N.m]
wLoadNominal load speed [rad/s]
JLoadLoad's moment of inertia [kg.m2]
imcDataInduction machine data

Modelica.Magnetic.QuasiStatic.FundamentalWave.Examples.BasicMachines.InductionMachines.IMC_Transformer Modelica.Magnetic.QuasiStatic.FundamentalWave.Examples.BasicMachines.InductionMachines.IMC_Transformer

Induction machine with squirrel cage starting with transformer

Information

At start time tStart1 three-phase voltage is supplied to the induction machine with squirrel cage via the transformer; the machine starts from standstill, accelerating inertias against load torque quadratic dependent on speed; at start time tStart2 the machine is fed directly from the voltage source, finally reaching nominal speed.

Simulate for 2.5 seconds and plot (versus time):

Default machine parameters are used.

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

NameDescription
VNominalNominal RMS voltage per phase [V]
fNominalNominal frequency [Hz]
tStart1Start time [s]
tStart2Start time of bypass transformer [s]
TLoadNominal load torque [N.m]
wLoadNominal load speed [rad/s]
JLoadLoad's moment of inertia [kg.m2]
transformerDataTransformer data
imcDataInduction machine data

Modelica.Magnetic.QuasiStatic.FundamentalWave.Examples.BasicMachines.InductionMachines.IMC_Conveyor Modelica.Magnetic.QuasiStatic.FundamentalWave.Examples.BasicMachines.InductionMachines.IMC_Conveyor

Induction machine with squirrel cage and inverter driving a conveyor

Information

An ideal frequency inverter is modeled by using a VfController and a three-phase SignalVoltage. Frequency is driven by a load cycle of acceleration, constant speed, deceleration and standstill. The mechanical load is a constant torque like a conveyor (with regularization around zero speed).

Simulate for 20 seconds and plot (versus time):

Default machine parameters are used.

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

NameDescription
mNumber of phases
VNominalNominal RMS voltage per phase [V]
fNominalNominal frequency [Hz]
wNominalNominal speed [rad/s]
TLoadNominal load torque [N.m]
JLoadLoad's moment of inertia [kg.m2]
rTransmission radius [m]
imcDataInduction machine data

Modelica.Magnetic.QuasiStatic.FundamentalWave.Examples.BasicMachines.InductionMachines.IMC_withLosses Modelica.Magnetic.QuasiStatic.FundamentalWave.Examples.BasicMachines.InductionMachines.IMC_withLosses

Induction machine with squirrel cage and losses

Information

Current I_simQS I_measQS
Speed w_simQS w_measQS
Power factor pf_simQS pf_measQS
Efficiency eff_simQS eff_measQS

Machine parameters are taken from a standard 18.5 kW 400 V 50 Hz motor, simulation results are compared with measurements.

Nominal stator current 32.85 A
Power factor 0.898
Speed 1462.5 rpm
Electrical input 20,443.95 W
Stator copper losses 770.13 W
Stator core losses 410.00 W
Rotor copper losses 481.60 W
Stray load losses 102.22 W
Friction losses 180.00 W
Mechanical output 18,500.00 W
Efficiency 90.49 %
Nominal torque 120.79 Nm

Stator resistance per phase 0.56 Ω
Temperature coefficient copper
Reference temperature 20 °C
Operation temperature 90 °C
Stator leakage reactance at 50 Hz 1.52 Ω
Main field reactance at 50 Hz 66.40 Ω
Rotor leakage reactance at 50 Hz 2.31 Ω
Rotor resistance per phase 0.42 Ω
Temperature coefficient aluminium
Reference temperature 20 °C
Operation temperature 90 °C

See:
Anton Haumer, Christian Kral, Hansjörg Kapeller, Thomas Bäuml, Johannes V. Gragger
The AdvancedMachines Library: Loss Models for Electric Machines
Modelica 2009, 7th International Modelica Conference

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

NameDescription
PNominalNominal output [W]
VNominalNominal RMS voltage [V]
INominalNominal RMS current [A]
pfNominalNominal power factor
PsNominalNominal stator power [W]
lossNominalNominal losses [W]
etaNominalNominal efficiency
fNominalNominal frequency [Hz]
wNominalNominal speed [rad/s]
TNominalNominal torque [N.m]
TempNominalNominal temperature [K]
imcDataInduction machine data

Modelica.Magnetic.QuasiStatic.FundamentalWave.Examples.BasicMachines.InductionMachines.IMC_Initialize Modelica.Magnetic.QuasiStatic.FundamentalWave.Examples.BasicMachines.InductionMachines.IMC_Initialize

Steady-state initialization of induction machine with squirrel cage

Information

Test example: Steady-State Initialization of an induction machine with squirrel cage
The induction machine with squirrel cage is initialized in steady-state at no-load; at time tStart a load torque step is applied.
Simulate for 1.5 seconds and plot (versus time): Default machine parameters of model IM_SquirrelCage are used.

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

NameDescription
mNumber of phases
VNominalNominal RMS voltage per phase [V]
fNominalNominal frequency [Hz]
wSyncSynchronous speed [rad/s]
tStartStart time [s]
TLoadNominal load torque [N.m]
wLoadNominal load speed [rad/s]
JLoadLoad's moment of inertia [kg.m2]
imcDataInduction machine data

Modelica.Magnetic.QuasiStatic.FundamentalWave.Examples.BasicMachines.InductionMachines.IMS_Characteristics Modelica.Magnetic.QuasiStatic.FundamentalWave.Examples.BasicMachines.InductionMachines.IMS_Characteristics

Characteristic curves of induction machine with slip rings

Information

This examples allows the investigation of characteristic curves of quasi-static polyphase induction machines with slip ring rotor as a function of rotor speed.

Simulate for 1 second and plot (versus imsQS.wMechanical or perUnitSpeed):

Default machine parameters are used. The rotor resistance may be varied to demonstrate the impact on the characteristic curves

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

NameDescription
mNumber of stator phases
mrNumber of rotor phases
VsNominalNominal RMS voltage per phase [V]
fNominalNominal frequency [Hz]
RrStarting resistance [Ohm]
pNumber of pole pairs
w_LoadNominal load speed [rad/s]
imsDataInduction machine data

Modelica.Magnetic.QuasiStatic.FundamentalWave.Examples.BasicMachines.InductionMachines.IMS_Start Modelica.Magnetic.QuasiStatic.FundamentalWave.Examples.BasicMachines.InductionMachines.IMS_Start

Starting of induction machine with slip rings

Information

This example compares a time transient and a quasi-static model of a polyphase induction machine. At start time tOn a transient and a quasi-static polyphase voltage source are connected to induction machine with sliprings. The machine starts from standstill, accelerating inertias against load torque quadratic dependent on speed, using a starting resistance. At time tRheostat external rotor resistance is shortened, finally reaching nominal speed.

Simulate for 1.5 seconds and plot (versus time):

Default machine parameters are used.

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

NameDescription
mNumber of stator phases
mrNumber of rotor phases
VsNominalNominal RMS voltage per phase [V]
fNominalNominal frequency [Hz]
tOnStart time of machine [s]
RStartStarting resistance [Ohm]
tRheostatTime of shortening the rheostat [s]
T_LoadNominal load torque [N.m]
w_LoadNominal load speed [rad/s]
J_LoadLoad inertia [kg.m2]
imsDataInduction machine data
Automatically generated Thu Oct 1 16:07:51 2020.