Modelica.Magnetic.QuasiStatic.FundamentalWave.Examples.Components

Examples for testing quasi-static fundamental wave components

Information

Extends from Modelica.Icons.ExamplesPackage (Icon for packages containing runnable examples).

Package Content

Name Description
Modelica.Magnetic.QuasiStatic.FundamentalWave.Examples.Components.PolyphaseInductance PolyphaseInductance Polyphase inductance
Modelica.Magnetic.QuasiStatic.FundamentalWave.Examples.Components.EddyCurrentLosses EddyCurrentLosses Comparison of equivalent circuits of eddy current loss models

Modelica.Magnetic.QuasiStatic.FundamentalWave.Examples.Components.PolyphaseInductance Modelica.Magnetic.QuasiStatic.FundamentalWave.Examples.Components.PolyphaseInductance

Polyphase inductance

Information

This example compares a quasi static electric polyphase inductor with an equivalent quasi static fundamental wave reluctance circuit. The phase inductance L and the magnetic fundamental wave reluctance R_m are related by:

R_m = m * effectiveTurns^2 / 2 / L

The real parts

and the imaginary parts

of the two currents show the same result and thus prove the equivalence of the two different modelling approaches.

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

NameDescription
mNumber of phases
fSupply frequency [Hz]
VRMSRMS supply voltage [V]
RResistance [Ohm]
LLoad inductance [H]
effectiveTurnsEffective number of turns

Modelica.Magnetic.QuasiStatic.FundamentalWave.Examples.Components.EddyCurrentLosses Modelica.Magnetic.QuasiStatic.FundamentalWave.Examples.Components.EddyCurrentLosses

Comparison of equivalent circuits of eddy current loss models

Information

In this example the eddy current losses are implemented in two different ways. Compare the loss dissipation powerb_e.power and powerb_m.power of the two models indicated by power meters.

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

NameDescription
RResistance [Ohm]
GcLoss conductance [S]
R_mReluctance of the magnetic circuit [H-1]
NNumber of turns
Automatically generated Thu Oct 1 16:07:51 2020.