quantileQuantile of truncated Weibull distribution |
This information is part of the Modelica Standard Library maintained by the Modelica Association.
Weibull.quantile(u, y_min=0, y_max=1, lambda=1, k=1);
This function computes the inverse cumulative distribution function (= quantile) according to a truncated Weibull distribution with minimum value u_min, maximum value u_max, scale parameter of original distribution lambda and shape parameter of original distribution k. Input argument u must be in the range:
0 ≤ u ≤ 1
Output argument y is in the range:
y_min ≤ y ≤ y_max
Plot of the function:
For more details
of the Weibull distribution, see
Wikipedia,
of truncated distributions, see
Wikipedia.
quantile(0.001) // = 0.0006323204312624211; quantile(0.5,0,1,0.5,0.9) // = 0.256951787882498
u |
Type: Real Description: Random number in the range 0 <= u <= 1 |
---|---|
y_min |
Default Value: 0 Type: Real Description: Lower limit of y |
y_max |
Default Value: 1 Type: Real Description: Upper limit of y |
lambda |
Default Value: 1 Type: Real Description: Scale parameter of the Weibull distribution |
k |
Type: Real Description: Shape parameter of the Weibull distribution |
y |
Type: Real Description: Random number u transformed according to the given distribution |
---|