quantile

Quantile of truncated Weibull distribution

Information

This information is part of the Modelica Standard Library maintained by the Modelica Association.

Syntax

Weibull.quantile(u, y_min=0, y_max=1, lambda=1, k=1);

Description

This function computes the inverse cumulative distribution function (= quantile) according to a truncated Weibull distribution with minimum value u_min, maximum value u_max, scale parameter of original distribution lambda and shape parameter of original distribution k. Input argument u must be in the range:

0 ≤ u ≤ 1

Output argument y is in the range:

y_min ≤ y ≤ y_max

Plot of the function:

For more details
of the Weibull distribution, see Wikipedia,
of truncated distributions, see Wikipedia.

Example

quantile(0.001)           // = 0.0006323204312624211;
quantile(0.5,0,1,0.5,0.9) // = 0.256951787882498

See also

TruncatedWeibull.density, TruncatedWeibull.cumulative.

Syntax

y = quantile(u, y_min, y_max, lambda, k)

Inputs (5)

u

Type: Real

Description: Random number in the range 0 <= u <= 1

y_min

Default Value: 0

Type: Real

Description: Lower limit of y

y_max

Default Value: 1

Type: Real

Description: Upper limit of y

lambda

Default Value: 1

Type: Real

Description: Scale parameter of the Weibull distribution

k

Type: Real

Description: Shape parameter of the Weibull distribution

Outputs (1)

y

Type: Real

Description: Random number u transformed according to the given distribution