Modelica.Magnetic.FundamentalWave.Examples.BasicMachines

Examples of machines of the FundamentalWave library

Information

Extends from Modelica.Icons.ExamplesPackage (Icon for packages containing runnable examples).

Package Content

Name Description
Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.AIMC_DOL AIMC_DOL Direct on line (DOL) start of asynchronous induction machine with squirrel cage
Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.AIMC_DOL_MultiPhase AIMC_DOL_MultiPhase Direct on line start of multi phase asynchronous induction machine with squirrel cage
Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.AIMC_YD AIMC_YD Asynchronous induction machine with squirrel cage starting Y-D
Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.AIMC_Transformer AIMC_Transformer Asynchronous induction machine with squirrel cage starting with transformer
Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.AIMC_Inverter AIMC_Inverter Asynchronous induction machine with squirrel cage and inverter
Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.AIMC_Conveyor AIMC_Conveyor Asynchronous induction machine with squirrel cage and inverter driving a conveyor
Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.AIMC_Steinmetz AIMC_Steinmetz Asynchronous induction machine with squirrel cage and Steinmetz-connection
Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.AIMC_withLosses AIMC_withLosses Asynchronous induction machine with squirrel cage and losses
Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.AIMC_Initialize AIMC_Initialize Steady-state initialization of asynchronous induction machine with squirrel cage
Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.AIMS_Start AIMS_Start Starting of asynchronous induction machine with slip rings
Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.AIMS_Start_MultiPhase AIMS_Start_MultiPhase Starting of multi phase asynchronous induction machine with slip rings
Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.SMPM_Inverter SMPM_Inverter Starting of permanent magnet synchronous machine with inverter
Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.SMPM_Inverter_MultiPhase SMPM_Inverter_MultiPhase Starting of multi phase permanent magnet synchronous machine with inverter
Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.SMPM_CurrentSource SMPM_CurrentSource Test example: PermanentMagnetSynchronousInductionMachine fed by current source
Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.SMPM_VoltageSource SMPM_VoltageSource Test example: PermanentMagnetSynchronousInductionMachine fed by FOC
Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.SMPM_Braking SMPM_Braking Test example: PermanentMagnetSynchronousInductionMachine acting as brake
Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.SMEE_DOL SMEE_DOL ElectricalExcitedSynchronousInductionMachine starting direct on line
Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.SMEE_Generator_MultiPhase SMEE_Generator_MultiPhase Electrical excited multi phase synchronous machine operating as generator
Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.SMEE_Generator SMEE_Generator Electrical excited synchronous machine operating as generator
Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.SMEE_LoadDump SMEE_LoadDump Test example: ElectricalExcitedSynchronousInductionMachine with voltage controller
Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.SMEE_Rectifier SMEE_Rectifier Test example: ElectricalExcitedSynchronousInductionMachine with rectifier
Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.SMR_Inverter SMR_Inverter Starting of synchronous reluctance machine with inverter
Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.SMR_Inverter_MultiPhase SMR_Inverter_MultiPhase Starting of multi phase synchronous reluctance machine with inverter

Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.AIMC_DOL Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.AIMC_DOL

Direct on line (DOL) start of asynchronous induction machine with squirrel cage

Information

At start time tStart three phase voltage is supplied to the asynchronous induction machine with squirrel cage. The machine starts from standstill, accelerating inertias against load torque quadratic dependent on speed, finally reaching nominal speed.

Simulate for 1.5 seconds and plot (versus time):

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

NameDescription
VsNominalNominal RMS voltage per phase [V]
fNominalNominal frequency [Hz]
tOnStart time of machine [s]
T_LoadNominal load torque [N.m]
w_LoadNominal load speed [rad/s]
J_LoadLoad inertia [kg.m2]
pNumber of pole pairs
aimcData 

Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.AIMC_DOL_MultiPhase Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.AIMC_DOL_MultiPhase

Direct on line start of multi phase asynchronous induction machine with squirrel cage

Information

At start time tStart voltages are supplied to the multi phase asynchronous induction machines with squirrel cage. The machines starts from standstill, accelerating inertias against load torque quadratic dependent on speed, finally reaching nominal speed. Two equivalent machines with different numbers of phases are compared and their equal behavior is demonstrated.

Simulate for 1.5 seconds and plot (versus time):

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

NameDescription
mNumber of stator phases
VsNominalNominal RMS voltage per phase [V]
fNominalNominal frequency [Hz]
tOnStart time of machine [s]
T_LoadNominal load torque [N.m]
w_LoadNominal load speed [rad/s]
J_LoadLoad inertia [kg.m2]
pNumber of pole pairs
aimcData 

Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.AIMC_YD Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.AIMC_YD

Asynchronous induction machine with squirrel cage starting Y-D

Information

At start time tStart three phase voltage is supplied to the asynchronous induction machine with squirrel cage, first star-connected, then delta-connected; the machine starts from standstill, accelerating inertias against load torque quadratic dependent on speed, finally reaching nominal speed.

Simulate for 2.5 seconds and plot (versus time):

Default machine parameters are used.

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

NameDescription
VNominalNominal RMS voltage per phase [V]
fNominalNominal frequency [Hz]
tStart1Start time [s]
tStart2Start time from Y to D [s]
TLoadNominal load torque [N.m]
wLoadNominal load speed [rad/s]
JLoadLoad's moment of inertia [kg.m2]
aimcData 

Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.AIMC_Transformer Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.AIMC_Transformer

Asynchronous induction machine with squirrel cage starting with transformer

Information

At start time tStart1 three phase voltage is supplied to the asynchronous induction machine with squirrel cage via the transformer; the machine starts from standstill, accelerating inertias against load torque quadratic dependent on speed; at start time tStart2 the machine is fed directly from the voltage source, finally reaching nominal speed.

Simulate for 2.5 seconds and plot (versus time):

Default machine parameters are used.

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

NameDescription
VNominalNominal RMS voltage per phase [V]
fNominalNominal frequency [Hz]
tStart1Start time [s]
tStart2Start time of bypass transformer [s]
TLoadNominal load torque [N.m]
wLoadNominal load speed [rad/s]
JLoadLoad's moment of inertia [kg.m2]
transformerData 
aimcData 

Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.AIMC_Inverter Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.AIMC_Inverter

Asynchronous induction machine with squirrel cage and inverter

Information

An ideal frequency inverter is modeled by using a VfController and a three-phase SignalVoltage. Frequency is raised by a ramp, causing the asynchronous induction machine with squirrel cage to start, and accelerating inertias. At time tStep a load step is applied.

Simulate for 1.5 seconds and plot (versus time):

Default machine parameters are used.

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

NameDescription
VNominalNominal RMS voltage per phase [V]
fNominalNominal frequency [Hz]
fMaximum operational frequency [Hz]
tRampFrequency ramp [s]
TLoadNominal load torque [N.m]
tStepTime of load torque step [s]
JLoadLoad's moment of inertia [kg.m2]
aimcData 

Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.AIMC_Conveyor Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.AIMC_Conveyor

Asynchronous induction machine with squirrel cage and inverter driving a conveyor

Information

An ideal frequency inverter is modeled by using a VfController and a three-phase SignalVoltage. Frequency is driven by a load cycle of acceleration, constant speed, deceleration and standstill. The mechanical load is a constant torque like a conveyor (with regularization around zero speed).

Simulate for 20 seconds and plot (versus time):

Default machine parameters are used.

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

NameDescription
VNominalNominal RMS voltage per phase [V]
fNominalNominal frequency [Hz]
wNominalNominal speed [rad/s]
TLoadNominal load torque [N.m]
JLoadLoad's moment of inertia [kg.m2]
rTransmission radius [m]
aimcData 

Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.AIMC_Steinmetz Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.AIMC_Steinmetz

Asynchronous induction machine with squirrel cage and Steinmetz-connection

Information

At start time tStart single phase voltage is supplied to the asynchronous induction machine with squirrel cage; the machine starts from standstill, accelerating inertias against load torque quadratic dependent on speed, finally reaching nominal speed.

Default machine parameters are used.

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

NameDescription
VNominalNominal RMS voltage per phase [V]
fNominalNominal frequency [Hz]
tStart1Start time [s]
CrMotor's running capacitor [F]
CsMotor's (additional) starting capacitor [F]
wSwitchSpeed for switching off the starting capacitor [rad/s]
TLoadNominal load torque [N.m]
wLoadNominal load speed [rad/s]
JLoadLoad's moment of inertia [kg.m2]
aimcData 

Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.AIMC_withLosses Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.AIMC_withLosses

Asynchronous induction machine with squirrel cage and losses

Information

Current I_sim I_meas
Speed w_sim w_meas
Power factor pf_sim pf_meas
Efficiency eff_sim eff_meas

Machine parameters are taken from a standard 18.5 kW 400 V 50 Hz motor, simulation results are compared with measurements.

Nominal stator current 32.85 A
Power factor 0.898
Speed 1462.5 rpm
Electrical input 20,443.95 W
Stator copper losses 770.13 W
Stator core losses 410.00 W
Rotor copper losses 481.60 W
Stray load losses 102.22 W
Friction losses 180.00 W
Mechanical output 18,500.00 W
Efficiency 90.49 %
Nominal torque 120.79 Nm

Stator resistance per phase 0.56 Ω
Temperature coefficient copper
Reference temperature 20 °C
Operation temperature 90 °C
Stator leakage reactance at 50 Hz 1.52 Ω
Main field reactance at 50 Hz 66.40 Ω
Rotor leakage reactance at 50 Hz 2.31 Ω
Rotor resistance per phase 0.42 Ω
Temperature coefficient aluminium
Reference temperature 20 °C
Operation temperature 90 °C

See:
Anton Haumer, Christian Kral, Hansjörg Kapeller, Thomas Bäuml, Johannes V. Gragger
The AdvancedMachines Library: Loss Models for Electric Machines
Modelica 2009, 7th International Modelica Conference

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

NameDescription
aimcData 

Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.AIMC_Initialize Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.AIMC_Initialize

Steady-state initialization of asynchronous induction machine with squirrel cage

Information

The asynchronous induction machine with squirrel cage is initialized in steady-state at no-load; at time tStart a load torque step is applied.

Simulate for 1.5 seconds and plot (versus time):

Default machine parameters are used.

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

NameDescription
VNominalNominal RMS voltage per phase [V]
fNominalNominal frequency [Hz]
wSync[rad/s]
tStartStart time [s]
TLoadNominal load torque [N.m]
wLoadNominal load speed [rad/s]
JLoadLoad's moment of inertia [kg.m2]
aimcData 

Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.AIMS_Start Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.AIMS_Start

Starting of asynchronous induction machine with slip rings

Information

At start time tOn three phase voltage is supplied to the asynchronous induction machine with sliprings. The machine starts from standstill, accelerating inertias against load torque quadratic dependent on speed, using a starting resistance. At time tRheostat external rotor resistance is shortened, finally reaching nominal speed.

Simulate for 1.5 seconds and plot (versus time):

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

NameDescription
VsNominalNominal RMS voltage per phase [V]
fNominalNominal frequency [Hz]
tOnStart time of machine [s]
RStartStarting resistance [Ohm]
tRheostatTime of shortening the rheostat [s]
T_LoadNominal load torque [N.m]
w_LoadNominal load speed [rad/s]
J_LoadLoad inertia [kg.m2]
aimsData 

Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.AIMS_Start_MultiPhase Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.AIMS_Start_MultiPhase

Starting of multi phase asynchronous induction machine with slip rings

Information

At start time tOn voltages are supplied to the asynchronous induction machines with sliprings. The two machine start from standstill, accelerating inertias against load torque quadratic dependent on speed, using a starting resistance. At time tRheostat external rotor resistance is shortened, finally reaching nominal speed. Two equivalent machines with different numbers of phases are compared and their equal behavior is demonstrated.

Simulate for 1.5 seconds and plot (versus time):

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

NameDescription
mNumber of stator phases
mrNumber of rotor phases
VsNominalNominal RMS voltage per phase [V]
fNominalNominal frequency [Hz]
tOnStart time of machine [s]
RStartStarting resistance [Ohm]
tRheostatTime of shortening the rheostat [s]
T_LoadNominal load torque [N.m]
w_LoadNominal load speed [rad/s]
J_LoadLoad inertia [kg.m2]
aimsData 

Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.SMPM_Inverter Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.SMPM_Inverter

Starting of permanent magnet synchronous machine with inverter

Information

Permanent magnet synchronous induction machine fed by an ideal inverter

An ideal frequency inverter is modeled by using a VfController and a three-phase SignalVoltage. Frequency is raised by a ramp, causing the permanent magnet synchronous induction machine to start, and accelerate the inertias.

At time tStep a load step is applied. Simulate for 1.5 seconds and plot (versus time):

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

NameDescription
VsNominalNominal RMS voltage per phase [V]
fsNominalNominal frequency [Hz]
fKneeKnee frequency of V/f curve [Hz]
tRampFrequency ramp [s]
T_LoadNominal load torque [N.m]
tStepTime of load torque step [s]
J_LoadLoad inertia [kg.m2]
smpmData 

Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.SMPM_Inverter_MultiPhase Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.SMPM_Inverter_MultiPhase

Starting of multi phase permanent magnet synchronous machine with inverter

Information

Permanent magnet synchronous induction machine fed by an ideal inverter

An ideal frequency inverter is modeled by using VfControllers and SignalVoltagess. Frequency is raised by a ramp, causing the permanent magnet synchronous induction machines to start, and accelerate the inertias. Two equivalent machines with different numbers of phases are compared and their equal behavior is demonstrated.

At time tStep a load step is applied. Simulate for 1.5 seconds and plot (versus time):

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

NameDescription
mNumber of stator phases
VsNominalNominal RMS voltage per phase [V]
fsNominalNominal frequency [Hz]
fKneeKnee frequency of V/f curve [Hz]
tRampFrequency ramp [s]
T_LoadNominal load torque [N.m]
tStepTime of load torque step [s]
J_LoadLoad inertia [kg.m2]
smpmData 

Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.SMPM_CurrentSource Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.SMPM_CurrentSource

Test example: PermanentMagnetSynchronousInductionMachine fed by current source

Information

A synchronous induction machine with permanent magnets accelerates a quadratic speed dependent load from standstill. The rms values of d- and q-current in rotor fixed coordinate system are converted to three-phase currents, and fed to the machine. The result shows that the torque is influenced by the q-current, whereas the stator voltage is influenced by the d-current.

Default machine parameters are used.

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

NameDescription
Idq[2]Desired d- and q-current [A]
wNominalNominal speed [rad/s]
TLoadNominal load torque [N.m]
JLoadLoad's moment of inertia [kg.m2]
smpmData 

Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.SMPM_VoltageSource Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.SMPM_VoltageSource

Test example: PermanentMagnetSynchronousInductionMachine fed by FOC

Information

A synchronous induction machine with permanent magnets accelerates a quadratic speed dependent load from standstill. The rms values of d- and q-current in rotor fixed coordinate system are controlled by the voltageController, and the output voltages fed to the machine. The result shows that the torque is influenced by the q-current, whereas the stator voltage is influenced by the d-current.

Default machine parameters are used

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

NameDescription
Idq[2]Desired d- and q-current [A]
wNominalNominal speed [rad/s]
TLoadNominal load torque [N.m]
JLoadLoad's moment of inertia [kg.m2]
smpmData 

Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.SMPM_Braking Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.SMPM_Braking

Test example: PermanentMagnetSynchronousInductionMachine acting as brake

Information

A synchronous induction machine with permanent magnets starts braking from nominal speed by feeding a diode bridge, which in turn feeds a braking resistor. Since induced voltage is reduced proportional to falling speed, the braking resistance is set proportional to speed to achieve constant current and torque.

Default machine parameters are used

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

NameDescription
RNominal braking resistance [Ohm]
wNominalNominal speed [rad/s]
JLoadLoad's moment of inertia [kg.m2]
smpmData 

Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.SMEE_DOL Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.SMEE_DOL

ElectricalExcitedSynchronousInductionMachine starting direct on line

Information

An electrically excited synchronous generator is started direct on line utilizing the damper cage (and the shorted excitation winding) at 0 seconds.

At t = 0.5 seconds, the excitation voltage is raised to achieve the no-load excitation current. Note, that reactive power of the stator goes to zero.

At t = 2 second, a driving torque step is applied to the shaft (i.e. the turbine is activated). Note, that the active (and the reactive) power of the stator change. To drive at higher torque, i.e., produce more electric power, excitation has to be adapted.

Simulate for 3 seconds and plot:

Default machine parameters are used.

Note

The mains switch is closed at time = 0 in order to avoid non physical noise calculated by the rotorDisplacementAngle. This noise is caused by the interaction of the high resistance of the switch and the machine, see #2388.

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

NameDescription
mNumber of phases
VNominalNominal RMS voltage per phase [V]
fNominalNominal frequency [Hz]
VeExcitation current [V]
gamma0Initial rotor displacement angle [rad]
smeeData 

Connectors

NameDescription
irRMSDamper cage RMS current [A]

Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.SMEE_Generator_MultiPhase Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.SMEE_Generator_MultiPhase

Electrical excited multi phase synchronous machine operating as generator

Information

Electrical excited synchronous induction machine as generator

Two electrically excited synchronous generators are connected to grids and driven with constant speed. Since speed is slightly smaller than synchronous speed corresponding to mains frequency, rotor angle is very slowly increased. Two equivalent machines with different numbers of phases are compared and their equal behavior is demonstrated.

Simulate for 30 seconds and plot (versus rotorAngleM3.rotorDisplacementAngle):

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

NameDescription
mNumber of stator phases
VsNominalNominal RMS voltage per phase [V]
fsNominalNominal frequency [Hz]
wNominal speed [rad/s]
IeExcitation current [A]
Ie0Initial excitation current [A]
gamma0Initial rotor displacement angle [rad]
pNumber of pole pairs
RsWarm stator resistance per phase [Ohm]
LssigmaStator stray inductance per phase [H]
LmdMain field inductance in d-axis [H]
LmqMain field inductance in q-axis [H]
LrsigmadDamper stray inductance (equivalent three phase winding) d-axis [H]
LrsigmaqDamper stray inductance (equivalent three phase winding) q-axis [H]
RrdWarm damper resistance (equivalent three phase winding) d-axis [Ohm]
RrqWarm damper resistance (equivalent three phase winding) q-axis [Ohm]
smeeData 

Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.SMEE_Generator Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.SMEE_Generator

Electrical excited synchronous machine operating as generator

Information

Electrical excited synchronous induction machine as generator

An electrically excited synchronous generator is connected to the grid and driven with constant speed. Since speed is slightly smaller than synchronous speed corresponding to mains frequency, rotor angle is very slowly increased. This allows to see several characteristics dependent on rotor angle.

Simulate for 30 seconds and plot (versus rotorAngleM.rotorDisplacementAngle):

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

NameDescription
VsNominalNominal RMS voltage per phase [V]
fsNominalNominal frequency [Hz]
wNominal speed [rad/s]
IeExcitation current [A]
Ie0Initial excitation current [A]
gamma0Initial rotor displacement angle [rad]
pNumber of pole pairs
RsWarm stator resistance per phase [Ohm]
LssigmaStator stray inductance per phase [H]
LmdMain field inductance in d-axis [H]
LmqMain field inductance in q-axis [H]
LrsigmadDamper stray inductance (equivalent three phase winding) d-axis [H]
LrsigmaqDamper stray inductance (equivalent three phase winding) q-axis [H]
RrdWarm damper resistance (equivalent three phase winding) d-axis [Ohm]
RrqWarm damper resistance (equivalent three phase winding) q-axis [Ohm]
smeeData 

Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.SMEE_LoadDump Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.SMEE_LoadDump

Test example: ElectricalExcitedSynchronousInductionMachine with voltage controller

Information

An electrically excited synchronous generator is started with a speed ramp, then driven with constant speed. Voltage is controlled, the set point depends on speed. After start-up the generator is loaded, the load is rejected.

Simulate for 10 seconds and plot:

Default machine parameters are used

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

NameDescription
wNominalNominal speed [rad/s]
ZNominalNominal load impedance [Ohm]
powerFactorLoad power factor
RLoadLoad resistance [Ohm]
LLoadLoad inductance [H]
Ve0No load excitation voltage [V]
kVoltage controller: gain
TiVoltage controller: integral time constant [s]
smeeData 

Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.SMEE_Rectifier Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.SMEE_Rectifier

Test example: ElectricalExcitedSynchronousInductionMachine with rectifier

Information

An electrically excited synchronous generator is driven with constant speed. Voltage is controlled, the set point depends on speed. The generator is loaded with a rectifier.

Default machine parameters are used

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

NameDescription
wNominalNominal speed [rad/s]
VDC0No-load DC voltage [V]
RLoadLoad resistance [Ohm]
Ve0No load excitation voltage [V]
kVoltage controller: gain
TiVoltage controller: integral time constant [s]
smeeData 

Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.SMR_Inverter Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.SMR_Inverter

Starting of synchronous reluctance machine with inverter

Information

Synchronous induction machine with reluctance rotor fed by an ideal inverter

An ideal frequency inverter is modeled by using a VfController and a three-phase SignalVoltage. Frequency is raised by a ramp, causing the reluctance machine to start, and accelerating inertias. At time tStep a load step is applied.

Simulate for 1.5 seconds and plot (versus time):

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

NameDescription
VsNominalNominal RMS voltage per phase [V]
fsNominalNominal frequency [Hz]
fKneeKnee frequency of V/f curve [Hz]
tRampFrequency ramp [s]
T_LoadNominal load torque [N.m]
tStepTime of load torque step [s]
J_LoadLoad inertia [kg.m2]
smrData 

Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.SMR_Inverter_MultiPhase Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.SMR_Inverter_MultiPhase

Starting of multi phase synchronous reluctance machine with inverter

Information

Synchronous induction machine with reluctance rotor fed by an ideal inverter

Ideal frequency inverters are modeled by using a VfController and phase SignalVoltages. Frequency is raised by a ramp, causing the reluctance machine to start, and accelerating inertias. At time tStep a load step is applied. Two equivalent machines with different numbers of phases are compared and their equal behavior is demonstrated.

Simulate for 1.5 seconds and plot (versus time):

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

NameDescription
mNumber of stator phases
VsNominalNominal RMS voltage per phase [V]
fsNominalNominal frequency [Hz]
fKneeKnee frequency of V/f curve [Hz]
tRampFrequency ramp [s]
T_LoadNominal load torque [N.m]
tStepTime of load torque step [s]
J_LoadLoad inertia [kg.m2]
smrData 
Automatically generated Thu Dec 19 17:20:04 2019.