Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.SynchronousMachines

Synchronous machines examples

Information

Extends from Modelica.Icons.ExamplesPackage (Icon for packages containing runnable examples).

Package Content

Name Description
Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.SynchronousMachines.ComparisonPolyphase ComparisonPolyphase Compare polyphase machines with three-phase machines
Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.SynchronousMachines.SMPM_Inverter SMPM_Inverter Starting of permanent magnet synchronous machine with inverter
Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.SynchronousMachines.SMPM_CurrentSource SMPM_CurrentSource Test example: PermanentMagnetSynchronousMachine fed by current source
Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.SynchronousMachines.SMPM_VoltageSource SMPM_VoltageSource Test example: PermanentMagnetSynchronousMachine fed by FOC
Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.SynchronousMachines.SMPM_Braking SMPM_Braking Test example: PermanentMagnetSynchronousMachine acting as brake
Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.SynchronousMachines.SMEE_DOL SMEE_DOL ElectricalExcitedSynchronousMachine starting direct on line
Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.SynchronousMachines.SMEE_Generator SMEE_Generator Electrical excited synchronous machine operating as generator
Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.SynchronousMachines.SMEE_LoadDump SMEE_LoadDump Test example: ElectricalExcitedSynchronousMachine with voltage controller
Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.SynchronousMachines.SMEE_Rectifier SMEE_Rectifier Test example: ElectricalExcitedSynchronousMachine with rectifier
Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.SynchronousMachines.SMR_Inverter SMR_Inverter Starting of synchronous reluctance machine with inverter

Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.SynchronousMachines.SMPM_Inverter Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.SynchronousMachines.SMPM_Inverter

Starting of permanent magnet synchronous machine with inverter

Information

Permanent magnet synchronous machine fed by an ideal inverter

An ideal frequency inverter is modeled by using a VfController and a three-phase SignalVoltage. Frequency is raised by a ramp, causing the permanent magnet synchronous machine to start, and accelerate the inertias.

At time tStep a load step is applied. Simulate for 1.5 seconds and plot (versus time):

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

NameDescription
VsNominalNominal RMS voltage per phase [V]
fsNominalNominal frequency [Hz]
fKneeKnee frequency of V/f curve [Hz]
tRampFrequency ramp [s]
T_LoadNominal load torque [N.m]
tStepTime of load torque step [s]
J_LoadLoad inertia [kg.m2]
smpmDataSynchronous machine data

Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.SynchronousMachines.SMPM_CurrentSource Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.SynchronousMachines.SMPM_CurrentSource

Test example: PermanentMagnetSynchronousMachine fed by current source

Information

A synchronous machine with permanent magnets accelerates a quadratic speed dependent load from standstill. The rms values of d- and q-current in rotor fixed coordinate system are converted to three-phase currents, and fed to the machine. The result shows that the torque is influenced by the q-current, whereas the stator voltage is influenced by the d-current.

Default machine parameters are used.

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

NameDescription
Idq[2]Desired d- and q-current [A]
wNominalNominal speed [rad/s]
TLoadNominal load torque [N.m]
JLoadLoad's moment of inertia [kg.m2]
smpmDataSynchronous machine data

Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.SynchronousMachines.SMPM_VoltageSource Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.SynchronousMachines.SMPM_VoltageSource

Test example: PermanentMagnetSynchronousMachine fed by FOC

Information

A synchronous machine with permanent magnets accelerates a quadratic speed dependent load from standstill. The rms values of d- and q-current in rotor fixed coordinate system are controlled by the voltageController, and the output voltages fed to the machine. The result shows that the torque is influenced by the q-current, whereas the stator voltage is influenced by the d-current.

Default machine parameters are used

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

NameDescription
Idq[2]Desired d- and q-current [A]
wNominalNominal speed [rad/s]
TLoadNominal load torque [N.m]
JLoadLoad's moment of inertia [kg.m2]
smpmDataSynchronous machine data

Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.SynchronousMachines.SMPM_Braking Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.SynchronousMachines.SMPM_Braking

Test example: PermanentMagnetSynchronousMachine acting as brake

Information

A synchronous machine with permanent magnets starts braking from nominal speed by feeding a diode bridge, which in turn feeds a braking resistor. Since induced voltage is reduced proportional to falling speed, the braking resistance is set proportional to speed to achieve constant current and torque.

Default machine parameters are used

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

NameDescription
RNominal braking resistance [Ohm]
wNominalNominal speed [rad/s]
JLoadLoad's moment of inertia [kg.m2]
smpmDataSynchronous machine data

Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.SynchronousMachines.SMEE_DOL Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.SynchronousMachines.SMEE_DOL

ElectricalExcitedSynchronousMachine starting direct on line

Information

An electrically excited synchronous generator is started direct on line utilizing the damper cage (and the shorted excitation winding) at 0 seconds.

At t = 0.5 seconds, the excitation voltage is raised to achieve the no-load excitation current. Note, that reactive power of the stator goes to zero.

At t = 2 second, a driving torque step is applied to the shaft (i.e. the turbine is activated). Note, that the active (and the reactive) power of the stator change. To drive at higher torque, i.e., produce more electric power, excitation has to be adapted.

Simulate for 3 seconds and plot:

Default machine parameters are used.

Note

The mains switch is closed at time = 0 in order to avoid non physical noise calculated by the rotorDisplacementAngle. This noise is caused by the interaction of the high resistance of the switch and the machine, see #2388.

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

NameDescription
mNumber of phases
VNominalNominal RMS voltage per phase [V]
fNominalNominal frequency [Hz]
VeExcitation current [V]
gamma0Initial rotor displacement angle [rad]
smeeDataSynchronous machine data

Connectors

NameDescription
irRMSDamper cage RMS current [A]

Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.SynchronousMachines.SMEE_Generator Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.SynchronousMachines.SMEE_Generator

Electrical excited synchronous machine operating as generator

Information

Electrical excited synchronous machine as generator

An electrically excited synchronous generator is connected to the grid and driven with constant speed. Since speed is slightly smaller than synchronous speed corresponding to mains frequency, rotor angle is very slowly increased. This allows to see several characteristics dependent on rotor angle.

Simulate for 30 seconds and plot (versus rotorAngleM.rotorDisplacementAngle):

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

NameDescription
VsNominalNominal RMS voltage per phase [V]
fsNominalNominal frequency [Hz]
wNominal speed [rad/s]
IeExcitation current [A]
Ie0Initial excitation current [A]
gamma0Initial rotor displacement angle [rad]
pNumber of pole pairs
RsWarm stator resistance per phase [Ohm]
LssigmaStator stray inductance per phase [H]
LmdMain field inductance in d-axis [H]
LmqMain field inductance in q-axis [H]
LrsigmadDamper stray inductance (equivalent three-phase winding) d-axis [H]
LrsigmaqDamper stray inductance (equivalent three-phase winding) q-axis [H]
RrdWarm damper resistance (equivalent three-phase winding) d-axis [Ohm]
RrqWarm damper resistance (equivalent three-phase winding) q-axis [Ohm]
smeeDataSynchronous machine data

Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.SynchronousMachines.SMEE_LoadDump Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.SynchronousMachines.SMEE_LoadDump

Test example: ElectricalExcitedSynchronousMachine with voltage controller

Information

An electrically excited synchronous generator is started with a speed ramp, then driven with constant speed. Voltage is controlled, the set point depends on speed. After start-up the generator is loaded, the load is rejected.

Simulate for 10 seconds and plot:

Default machine parameters are used

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

NameDescription
wNominalNominal speed [rad/s]
ZNominalNominal load impedance [Ohm]
powerFactorLoad power factor
RLoadLoad resistance [Ohm]
LLoadLoad inductance [H]
Ve0No load excitation voltage [V]
kVoltage controller: gain
TiVoltage controller: integral time constant [s]
smeeDataSynchronous machine data

Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.SynchronousMachines.SMEE_Rectifier Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.SynchronousMachines.SMEE_Rectifier

Test example: ElectricalExcitedSynchronousMachine with rectifier

Information

An electrically excited synchronous generator is driven with constant speed. Voltage is controlled, the set point depends on speed. The generator is loaded with a rectifier.

Default machine parameters are used

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

NameDescription
wNominalNominal speed [rad/s]
VDC0No-load DC voltage [V]
RLoadLoad resistance [Ohm]
Ve0No load excitation voltage [V]
kVoltage controller: gain
TiVoltage controller: integral time constant [s]
smeeDataSynchronous machine data

Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.SynchronousMachines.SMR_Inverter Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.SynchronousMachines.SMR_Inverter

Starting of synchronous reluctance machine with inverter

Information

Synchronous machine with reluctance rotor fed by an ideal inverter

An ideal frequency inverter is modeled by using a VfController and a three-phase SignalVoltage. Frequency is raised by a ramp, causing the reluctance machine to start, and accelerating inertias. At time tStep a load step is applied.

Simulate for 1.5 seconds and plot (versus time):

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

NameDescription
VsNominalNominal RMS voltage per phase [V]
fsNominalNominal frequency [Hz]
fKneeKnee frequency of V/f curve [Hz]
tRampFrequency ramp [s]
T_LoadNominal load torque [N.m]
tStepTime of load torque step [s]
J_LoadLoad inertia [kg.m2]
smrDataSynchronous machine data
Automatically generated Thu Oct 1 16:07:50 2020.