Package Modelica.​Electrical.​QuasiStationary.​MultiPhase.​Basic
Basic components for AC multiphase models

Information

This package hosts basic models for quasi stationary multiphase circuits. Quasi stationary theory can be found in the references.

See also

SinglePhase.Basic

Extends from Modelica.​Icons.​Package (Icon for standard packages).

Package Contents

NameDescription
AdmittanceMultiphase linear admittance
CapacitorMultiphase linear capacitor
ConductorMultiphase linear conductor
DeltaDelta (polygon) connection
ImpedanceMultiphase linear impedance
InductorMultiphase linear inductor
MultiDeltaDelta (polygon) connection of multi phase systems consisting of multiple base systems
MultiStarStar connection of multi phase systems consisting of multiple base systems
MultiStarResistanceResistance connection of star points
MutualInductorLinear mutual inductor
PlugToPin_nConnect one (negative) pin
PlugToPin_pConnect one (positive) pin
PlugToPins_nConnect all (negative) pins
PlugToPins_pConnect all (positive) pins
ResistorMultiphase linear resistor
StarStar connection
VariableAdmittanceMultiphase variable admittance
VariableCapacitorMultiphase variable capacitor
VariableConductorMultiphase variable conductor
VariableImpedanceMultiphase variable impedance
VariableInductorMultiphase variable inductor
VariableResistorMultiphase variable resistor

Model Modelica.​Electrical.​QuasiStationary.​MultiPhase.​Basic.​Star
Star connection

Information

Star (wye) connection of a multi phase circuit. The potentials at the star points are the same.

See also

Delta, MultiStar, MultiDelta

Parameters

TypeNameDefaultDescription
Integerm3Number of phases

Connectors

TypeNameDescription
PositivePlugplug_p 
NegativePinpin_n 

Model Modelica.​Electrical.​QuasiStationary.​MultiPhase.​Basic.​Delta
Delta (polygon) connection

Information

Delta (polygon) connection of a multi phase circuit.

See also

Star, MultiStar, MultiDelta

Parameters

TypeNameDefaultDescription
Integerm3Number of phases

Connectors

TypeNameDescription
PositivePlugplug_p 
NegativePlugplug_n 

Model Modelica.​Electrical.​QuasiStationary.​MultiPhase.​Basic.​MultiStar
Star connection of multi phase systems consisting of multiple base systems

Information

Star (wye) connection of a multi phase circuit consisting of multiple base systems (see multi phase guidelines). The potentials at the star points are all equal.

See also

Star, Delta, MultiDelta

Parameters

TypeNameDefaultDescription
Integerm3Number of phases
final IntegermSystemsModelica.Electrical.MultiPhase.Functions.numberOfSymmetricBaseSystems(m)Number of base systems
final IntegermBasicinteger(m / mSystems)Phase number of base systems

Connectors

TypeNameDescription
PositivePlugplug_p 
NegativePlugstarpoints 

Model Modelica.​Electrical.​QuasiStationary.​MultiPhase.​Basic.​MultiDelta
Delta (polygon) connection of multi phase systems consisting of multiple base systems

Information

Delta (polygon) connection of a multi phase circuit consisting of multiple base systems (see multi phase guidelines).

See also

Star, Delta, MultiStar

Parameters

TypeNameDefaultDescription
Integerm3Number of phases
final IntegermSystemsModelica.Electrical.MultiPhase.Functions.numberOfSymmetricBaseSystems(m)Number of base systems
final IntegermBasicinteger(m / mSystems)Phase number of base systems

Connectors

TypeNameDescription
PositivePlugplug_p 
NegativePlugplug_n 

Model Modelica.​Electrical.​QuasiStationary.​MultiPhase.​Basic.​MultiStarResistance
Resistance connection of star points

Information

Multi star points are connected by resistors. This model is required to operate multi phase systems with even phase numbers to avoid ideal connections of start points of base systems; see multi phase guidelines.

Parameters

TypeNameDefaultDescription
Integerm3Number of phases
final IntegermBasicModelica.Electrical.MultiPhase.Functions.numberOfSymmetricBaseSystems(m)Number of symmetric base systems
ResistanceR1000000Insulation resistance between base systems

Connectors

TypeNameDescription
PositivePlugplug 
NegativePinpin 

Model Modelica.​Electrical.​QuasiStationary.​MultiPhase.​Basic.​PlugToPin_p
Connect one (positive) pin

Information

Connects the single phase (positive) pin k of the multi phase (positive) plug to a single phase (positive) pin.

See also

PlugToPin_n, PlutToPins_p, PlugToPins_n

Parameters

TypeNameDefaultDescription
Integerm3Number of phases
Integerk1Phase index

Connectors

TypeNameDescription
PositivePlugplug_p 
PositivePinpin_p 

Model Modelica.​Electrical.​QuasiStationary.​MultiPhase.​Basic.​PlugToPin_n
Connect one (negative) pin

Information

Connects the single phase (negative) pin k of the multi phase (negative) plug to a single phase (negative) pin.

See also

PlugToPin_p, PlutToPins_p, PlugToPins_n

Parameters

TypeNameDefaultDescription
Integerm3Number of phases
Integerk1Phase index

Connectors

TypeNameDescription
NegativePlugplug_n 
NegativePinpin_n 

Model Modelica.​Electrical.​QuasiStationary.​MultiPhase.​Basic.​PlugToPins_p
Connect all (positive) pins

Information

Connects all m single phase (positive) pins of the multi phase (positive) plug to an array of m single phase (positive) pins.

See also

PlugToPin_p, PlugToPin_n, PlugToPins_n

Parameters

TypeNameDefaultDescription
Integerm3number of phases

Connectors

TypeNameDescription
PositivePlugplug_p 
PositivePinpin_p[m] 

Model Modelica.​Electrical.​QuasiStationary.​MultiPhase.​Basic.​PlugToPins_n
Connect all (negative) pins

Information

Connects all m single phase (negative) pins of the multi phase (negative) plug to an array of m single phase (negative) pins.

See also

PlugToPin_p, PlugToPin_n, PlugToPins_p

Parameters

TypeNameDefaultDescription
Integerm3number of phases

Connectors

TypeNameDescription
NegativePlugplug_n 
NegativePinpin_n[m] 

Model Modelica.​Electrical.​QuasiStationary.​MultiPhase.​Basic.​Resistor
Multiphase linear resistor

Information

The linear resistor connects the complex voltages v with the complex currents i by i*R = v, using m single phase Resistors.

The resistor model also has m optional conditional heat ports. A linear temperature dependency of the resistances for enabled heat ports is also taken into account.

See also

Resistor, Conductor, Capacitor, Inductor, Impedance, Admittance, Variable resistor, Variable conductor, Variable capacitor, Variable inductor, Variable impedance, Variable admittance

Extends from Modelica.​Electrical.​QuasiStationary.​MultiPhase.​Interfaces.​TwoPlug (Two plugs with pin-adapter) and Modelica.​Electrical.​MultiPhase.​Interfaces.​ConditionalHeatPort (Partial model to include conditional HeatPorts in order to describe the power loss via a thermal network).

Parameters

TypeNameDefaultDescription
Integerm3Number of phases
ResistanceR_ref[m] Reference resistances at T_ref
TemperatureT_ref[m]fill(293.15, m)Reference temperatures
LinearTemperatureCoefficientalpha_ref[m]zeros(m)Temperature coefficient of resistance (R_actual = R_ref*(1 + alpha_ref*(heatPort.T - T_ref))
final IntegermhmNumber of heatPorts=number of phases
BooleanuseHeatPortfalse=true, if all heat ports are enabled
TemperatureT[mh]T_refFixed device temperatures if useHeatPort = false

Connectors

TypeNameDescription
PositivePlugplug_pPositive quasi-static polyphase plug
NegativePlugplug_nNegative quasi-static polyphase plug
HeatPort_aheatPort[mh]Conditional heat ports

Model Modelica.​Electrical.​QuasiStationary.​MultiPhase.​Basic.​Conductor
Multiphase linear conductor

Information

The linear resistor connects the complex currents i with the complex voltages v by v*G = i, using m single phase Conductors.

The conductor model also has m optional conditional heat ports. A linear temperature dependency of the conductances for enabled heat ports is also taken into account.

See also

Conductor, Resistor, Capacitor, Inductor, Impedance, Admittance, Variable resistor, Variable conductor, Variable capacitor, Variable inductor, Variable impedance, Variable admittance

Extends from Modelica.​Electrical.​QuasiStationary.​MultiPhase.​Interfaces.​TwoPlug (Two plugs with pin-adapter) and Modelica.​Electrical.​MultiPhase.​Interfaces.​ConditionalHeatPort (Partial model to include conditional HeatPorts in order to describe the power loss via a thermal network).

Parameters

TypeNameDefaultDescription
Integerm3Number of phases
ConductanceG_ref[m] Reference conductances at T_ref
TemperatureT_ref[m]fill(293.15, m)Reference temperatures
LinearTemperatureCoefficientalpha_ref[m]zeros(m)Temperature coefficient of conductance (G_actual = G_ref/(1 + alpha_ref*(heatPort.T - T_ref))
final IntegermhmNumber of heatPorts=number of phases
BooleanuseHeatPortfalse=true, if all heat ports are enabled
TemperatureT[mh]T_refFixed device temperatures if useHeatPort = false

Connectors

TypeNameDescription
PositivePlugplug_pPositive quasi-static polyphase plug
NegativePlugplug_nNegative quasi-static polyphase plug
HeatPort_aheatPort[mh]Conditional heat ports

Model Modelica.​Electrical.​QuasiStationary.​MultiPhase.​Basic.​Capacitor
Multiphase linear capacitor

Information

The linear capacitor connects the complex currents i with the complex voltages v by v*j*ω*C = i, using m single phase Capacitors.

See also

Capacitor, Resistor, Conductor, Inductor, Impedance, Admittance, Variable resistor, Variable conductor, Variable capacitor, Variable inductor, Variable impedance, Variable admittance

Extends from Modelica.​Electrical.​QuasiStationary.​MultiPhase.​Interfaces.​TwoPlug (Two plugs with pin-adapter).

Parameters

TypeNameDefaultDescription
Integerm3Number of phases
CapacitanceC[m] Capacitances

Connectors

TypeNameDescription
PositivePlugplug_pPositive quasi-static polyphase plug
NegativePlugplug_nNegative quasi-static polyphase plug

Model Modelica.​Electrical.​QuasiStationary.​MultiPhase.​Basic.​Inductor
Multiphase linear inductor

Information

The linear inductor connects the complex voltages v with the complex currents i by i*j*ω*L = v, using m single phase Inductors.

See also

Inductor, Resistor, Conductor, Capacitor, Impedance, Admittance, Variable resistor, Variable conductor, Variable capacitor, Variable inductor, Variable impedance, Variable admittance

Extends from Modelica.​Electrical.​QuasiStationary.​MultiPhase.​Interfaces.​TwoPlug (Two plugs with pin-adapter).

Parameters

TypeNameDefaultDescription
Integerm3Number of phases
InductanceL[m] Inductances

Connectors

TypeNameDescription
PositivePlugplug_pPositive quasi-static polyphase plug
NegativePlugplug_nNegative quasi-static polyphase plug

Model Modelica.​Electrical.​QuasiStationary.​MultiPhase.​Basic.​MutualInductor
Linear mutual inductor

Information

Model of a multi phase inductor providing a mutual inductance matrix model.

Implementation

  v[1] = j*omega*L[1,1]*i[1] + j*omega*L[1,2]*i[2] + ... + j*omega*L[1,m]*i[m]
  v[2] = j*omega*L[2,1]*i[1] + j*omega*L[2,2]*i[2] + ... + j*omega*L[2,m]*i[m]
     :              :                     :                           :
  v[m] = j*omega*L[m,1]*i[1] + j*omega*L[m,2]*i[2] + ... + j*omega*L[m,m]*i[m]

Extends from Modelica.​Electrical.​QuasiStationary.​MultiPhase.​Interfaces.​OnePort.

Parameters

TypeNameDefaultDescription
Integerm3Number of phases
Realepsilon1e-9Relative accuracy tolerance of matrix symmetry
InductanceL[m,m] Mutual inductance matrix

Connectors

TypeNameDescription
PositivePlugplug_pPositive quasi-static polyphase plug
NegativePlugplug_nNegative quasi-static polyphase plug

Model Modelica.​Electrical.​QuasiStationary.​MultiPhase.​Basic.​Impedance
Multiphase linear impedance

Information

The impedance model represents a series connection of a resistor and either an inductor or capacitor in each phase.

The linear impedance connects the voltage v with the current i by v = Z*i in each phase, using m singlephase impedances. The resistive components are modeled temperature dependent, so the real parts R_actual = real(Z) are determined from the actual operating temperatures and the reference input resistances real(Z_ref). Conditional heat ports are considered. The reactive components X_actual = imag(Z) are equal to imag(Z_ref) if frequencyDependent = false. Frequency dependency is considered by frequencyDependent = true, distinguishing two cases:

(a) imag(Z_ref) > 0: inductive case
The actual reactances X_actual are proportional to f/f_ref
(b) imag(Z_ref) < 0: capacitive case
The actual reactances X_actual are proportional to f_ref/f

See also

Impedance, Resistor, Conductor, Capacitor, Inductor, Admittance, Variable resistor, Variable conductor, Variable capacitor, Variable inductor, Variable impedance, Variable admittance

Extends from Modelica.​Electrical.​QuasiStationary.​MultiPhase.​Interfaces.​TwoPlug (Two plugs with pin-adapter) and Modelica.​Electrical.​MultiPhase.​Interfaces.​ConditionalHeatPort (Partial model to include conditional HeatPorts in order to describe the power loss via a thermal network).

Parameters

TypeNameDefaultDescription
Integerm3Number of phases
ComplexImpedanceZ_ref[m] Complex impedances R_ref + j*X_ref
TemperatureT_ref[m]fill(293.15, m)Reference temperatures
LinearTemperatureCoefficientalpha_ref[m]zeros(m)Temperature coefficient of resistance (R_actual = R_ref*(1 + alpha_ref*(heatPort.T - T_ref))
final IntegermhmNumber of heatPorts=number of phases
BooleanuseHeatPortfalse=true, if all heat ports are enabled
TemperatureT[mh]T_refFixed device temperatures if useHeatPort = false
BooleanfrequencyDependentfalseConsider frequency dependency, if true
Frequencyf_ref1Reference frequency, if frequency dependency is considered

Connectors

TypeNameDescription
PositivePlugplug_pPositive quasi-static polyphase plug
NegativePlugplug_nNegative quasi-static polyphase plug
HeatPort_aheatPort[mh]Conditional heat ports

Model Modelica.​Electrical.​QuasiStationary.​MultiPhase.​Basic.​Admittance
Multiphase linear admittance

Information

The admittance model represents a parallel connection of a resistor and either a capacitor or inductor in each phase.

The linear admittance connects the voltage v with the current i by i = Y*v in each phase, using m singlephase admittances. The resistive components are modeled temperature dependent, so the real parts G_actual = real(Y) are determined from the actual operating temperatures and the reference input conductances real(Y_ref). Conditional heat ports are considered. The reactive components B_actual = imag(Y) are equal to imag(Y_ref) if frequencyDependent = false. Frequency dependency is considered by frequencyDependent = true, distinguishing two cases:

(a) imag(Y_ref) > 0: capacitive case
The actual susceptances B_actual are proportional to f/f_ref
(b) imag(Y_ref) < 0: inductive case
The actual susceptances B_actual are proportional to f_ref/f

See also

Admittance, Resistor, Conductor, Capacitor, Impedance, Variable resistor, Variable conductor, Variable capacitor, Variable inductor, Variable impedance, Variable admittance

Extends from Modelica.​Electrical.​QuasiStationary.​MultiPhase.​Interfaces.​TwoPlug (Two plugs with pin-adapter) and Modelica.​Electrical.​MultiPhase.​Interfaces.​ConditionalHeatPort (Partial model to include conditional HeatPorts in order to describe the power loss via a thermal network).

Parameters

TypeNameDefaultDescription
Integerm3Number of phases
ComplexAdmittanceY_ref[m] Complex admittances G_ref + j*B_ref
TemperatureT_ref[m]fill(293.15, m)Reference temperatures
LinearTemperatureCoefficientalpha_ref[m]zeros(m)Temperature coefficient of resistance (R_actual = R_ref*(1 + alpha_ref*(heatPort.T - T_ref))
final IntegermhmNumber of heatPorts=number of phases
BooleanuseHeatPortfalse=true, if all heat ports are enabled
TemperatureT[mh]T_refFixed device temperatures if useHeatPort = false
BooleanfrequencyDependentfalseConsider frequency dependency, if true
Frequencyf_ref1Reference frequency, if frequency dependency is considered

Connectors

TypeNameDescription
PositivePlugplug_pPositive quasi-static polyphase plug
NegativePlugplug_nNegative quasi-static polyphase plug
HeatPort_aheatPort[mh]Conditional heat ports

Model Modelica.​Electrical.​QuasiStationary.​MultiPhase.​Basic.​VariableResistor
Multiphase variable resistor

Information

The linear resistors connect the complex voltages v with the complex currents i by i*R = v, using m single phase variable Resistors. The resistances R are given as m input signals.

The resistor model also has m optional conditional heat ports. A linear temperature dependency of the resistances is also taken into account.

See also

VariableResistor, Resistor, Conductor, Capacitor, Inductor, Impedance, Admittance, Variable conductor, Variable capacitor, Variable inductor, Variable impedance, Variable admittance

Extends from Modelica.​Electrical.​QuasiStationary.​MultiPhase.​Interfaces.​TwoPlug (Two plugs with pin-adapter) and Modelica.​Electrical.​MultiPhase.​Interfaces.​ConditionalHeatPort (Partial model to include conditional HeatPorts in order to describe the power loss via a thermal network).

Parameters

TypeNameDefaultDescription
Integerm3Number of phases
TemperatureT_ref[m]fill(293.15, m)Reference temperatures
LinearTemperatureCoefficientalpha_ref[m]zeros(m)Temperature coefficient of resistance (R_actual = R_ref*(1 + alpha_ref*(heatPort.T - T_ref))
final IntegermhmNumber of heatPorts=number of phases
BooleanuseHeatPortfalse=true, if all heat ports are enabled
TemperatureT[mh]T_refFixed device temperatures if useHeatPort = false

Connectors

TypeNameDescription
PositivePlugplug_pPositive quasi-static polyphase plug
NegativePlugplug_nNegative quasi-static polyphase plug
HeatPort_aheatPort[mh]Conditional heat ports
input RealInputR_ref[m]Variable resistance

Model Modelica.​Electrical.​QuasiStationary.​MultiPhase.​Basic.​VariableConductor
Multiphase variable conductor

Information

The linear resistors connect the complex currents i with the complex voltages v by v*G = i, using m single phase variable Conductors. The conductances G are given as m input signals.

The conductor model also has m optional conditional heat ports. A linear temperature dependency of the conductances is also taken into account.

See also

VariableConductor, Resistor, Conductor, Capacitor, Inductor, Impedance, Admittance, Variable resistor, Variable capacitor, Variable inductor Variable impedance, Variable admittance

Extends from Modelica.​Electrical.​QuasiStationary.​MultiPhase.​Interfaces.​TwoPlug (Two plugs with pin-adapter) and Modelica.​Electrical.​MultiPhase.​Interfaces.​ConditionalHeatPort (Partial model to include conditional HeatPorts in order to describe the power loss via a thermal network).

Parameters

TypeNameDefaultDescription
Integerm3Number of phases
TemperatureT_ref[m]fill(293.15, m)Reference temperatures
LinearTemperatureCoefficientalpha_ref[m]zeros(m)Temperature coefficient of resistance (G_actual = G_ref/(1 + alpha_ref*(heatPort.T - T_ref))
final IntegermhmNumber of heatPorts=number of phases
BooleanuseHeatPortfalse=true, if all heat ports are enabled
TemperatureT[mh]T_refFixed device temperatures if useHeatPort = false

Connectors

TypeNameDescription
PositivePlugplug_pPositive quasi-static polyphase plug
NegativePlugplug_nNegative quasi-static polyphase plug
HeatPort_aheatPort[mh]Conditional heat ports
input RealInputG_ref[m]Variable conductance

Model Modelica.​Electrical.​QuasiStationary.​MultiPhase.​Basic.​VariableCapacitor
Multiphase variable capacitor

Information

The linear capacitors connect the complex currents i with the complex voltages v by v*j*ω*C = i, using m single phase variable Capacitors. The capacitances C are given as m input signals.

See also

VariableCapacitor, Resistor, Conductor, Capacitor, Inductor, Impedance, Admittance, Variable resistor, Variable conductor, Variable inductor Variable impedance, Variable admittance

Extends from Modelica.​Electrical.​QuasiStationary.​MultiPhase.​Interfaces.​TwoPlug (Two plugs with pin-adapter).

Parameters

TypeNameDefaultDescription
Integerm3Number of phases

Connectors

TypeNameDescription
PositivePlugplug_pPositive quasi-static polyphase plug
NegativePlugplug_nNegative quasi-static polyphase plug
input RealInputC[m]Variable capacitance

Model Modelica.​Electrical.​QuasiStationary.​MultiPhase.​Basic.​VariableInductor
Multiphase variable inductor

Information

The linear inductors connect the complex voltages v with the complex currents i by i*j*ω*L = v, using m single phase variable Inductors. The inductances L are given as m input signals.

See also

Inductor, Resistor, Conductor, Capacitor, Inductor, Impedance, Admittance, Variable resistor, Variable conductor, Variable capacitor Variable impedance, Variable admittance

Extends from Modelica.​Electrical.​QuasiStationary.​MultiPhase.​Interfaces.​TwoPlug (Two plugs with pin-adapter).

Parameters

TypeNameDefaultDescription
Integerm3Number of phases

Connectors

TypeNameDescription
PositivePlugplug_pPositive quasi-static polyphase plug
NegativePlugplug_nNegative quasi-static polyphase plug
input RealInputL[m]Variable inductance

Model Modelica.​Electrical.​QuasiStationary.​MultiPhase.​Basic.​VariableImpedance
Multiphase variable impedance

Information

The impedance model represents a series connection of a resistor and either an inductor or capacitor in each phase.

The linear impedance connects the complex voltage v with the complex current i by i*Z = v in each phase, using m variable singlephase impedances. The impedances Z_ref = R_ref + j*X_ref are given as complex input signals, representing the resistive and reactive components of the input impedances. The resistive components are modeled temperature dependent, so the real part R_actual = real(Z) are determined from the actual operating temperatures and the reference input resistances real(Z_ref). Conditional heat ports are considered. The reactive components X_actual = imag(Z) are equal to imag(Z_ref) if frequencyDependent = false. Frequency dependency is considered by frequencyDependent = true, distinguishing two cases:

(a) imag(Z_ref) > 0: inductive case
The actual reactances X_actual are proportional to f/f_ref
(b) imag(Z_ref) < 0: capacitive case
The actual reactances X_actual are proportional to f_ref/f

Note

Zero crossings of the real or imaginary parts of the impedance signals Z_ref could cause singularities due to the actual structure of the connected network.

See also

VariableResistor, Resistor, Conductor, Capacitor, Inductor, Impedance, Admittance, Variable conductor, Variable capacitor, Variable inductor Variable admittance

Extends from Modelica.​Electrical.​QuasiStationary.​MultiPhase.​Interfaces.​TwoPlug (Two plugs with pin-adapter) and Modelica.​Electrical.​MultiPhase.​Interfaces.​ConditionalHeatPort (Partial model to include conditional HeatPorts in order to describe the power loss via a thermal network).

Parameters

TypeNameDefaultDescription
Integerm3Number of phases
TemperatureT_ref[m]fill(293.15, m)Reference temperatures
LinearTemperatureCoefficientalpha_ref[m]zeros(m)Temperature coefficient of resistance (R_actual = R_ref*(1 + alpha_ref*(heatPort.T - T_ref))
final IntegermhmNumber of heatPorts=number of phases
BooleanuseHeatPortfalse=true, if all heat ports are enabled
TemperatureT[mh]T_refFixed device temperatures if useHeatPort = false
BooleanfrequencyDependentfalseConsider frequency dependency, if true
Frequencyf_ref1Reference frequency, if frequency dependency is considered

Connectors

TypeNameDescription
PositivePlugplug_pPositive quasi-static polyphase plug
NegativePlugplug_nNegative quasi-static polyphase plug
HeatPort_aheatPort[mh]Conditional heat ports
input ComplexInputZ_ref[m]Variable complex impedances

Model Modelica.​Electrical.​QuasiStationary.​MultiPhase.​Basic.​VariableAdmittance
Multiphase variable admittance

Information

The admittance model represents a parallel connection of a resistor and either a capacitor or inductor in each phase.

The linear admittance connects the complex voltage v with the complex current i by v*Y = i in each phase, using m variable singlephase admittances. The admittances Y_ref = G_ref + j*B_ref are given as complex input signals, representing the resistive and reactive components of the input admittances. The resistive components are modeled temperature dependent, so the real part G_actual = real(Y) are determined from the actual operating temperatures and the reference input conductances real(Y_ref). Conditional heat ports are considered. The reactive components B_actual = imag(Y) are equal to imag(Y_ref) if frequencyDependent = false. Frequency dependency is considered by frequencyDependent = true, distinguishing two cases:

(a) imag(Y_ref) > 0: capacitive case
The actual susceptances B_actual are proportional to f/f_ref
(b) imag(Y_ref) < 0: inductive case
The actual susceptances B_actual are proportional to f_ref/f

Note

Zero crossings of the real or imaginary parts of the admittance signals Y_ref could cause singularities due to the actual structure of the connected network.

See also

VariableResistor, Resistor, Conductor, Capacitor, Inductor, Impedance, Admittance, Variable conductor, Variable capacitor, Variable inductor Variable impedance,

Extends from Modelica.​Electrical.​QuasiStationary.​MultiPhase.​Interfaces.​TwoPlug (Two plugs with pin-adapter) and Modelica.​Electrical.​MultiPhase.​Interfaces.​ConditionalHeatPort (Partial model to include conditional HeatPorts in order to describe the power loss via a thermal network).

Parameters

TypeNameDefaultDescription
Integerm3Number of phases
TemperatureT_ref[m]fill(293.15, m)Reference temperatures
LinearTemperatureCoefficientalpha_ref[m]zeros(m)Temperature coefficient of resistance (R_actual = R_ref*(1 + alpha_ref*(heatPort.T - T_ref))
final IntegermhmNumber of heatPorts=number of phases
BooleanuseHeatPortfalse=true, if all heat ports are enabled
TemperatureT[mh]T_refFixed device temperatures if useHeatPort = false
BooleanfrequencyDependentfalseConsider frequency dependency, if true
Frequencyf_ref1Reference frequency, if frequency dependency is considered

Connectors

TypeNameDescription
PositivePlugplug_pPositive quasi-static polyphase plug
NegativePlugplug_nNegative quasi-static polyphase plug
HeatPort_aheatPort[mh]Conditional heat ports
input ComplexInputY_ref[m]Variable complex admittances

Generated 2018-12-12 12:10:33 EST by MapleSim.