Pipe

Pipe with optional heat exchange

Information

This information is part of the Modelica Standard Library maintained by the Modelica Association.

Pipe with optional heat exchange.

Thermodynamic equations are defined by BaseClasses.TwoPort. Q_flow is defined by heatPort.Q_flow (useHeatPort=true) or zero (useHeatPort=false).

Note: Setting parameter m (mass of medium within pipe) to zero leads to neglect of temperature transient cv*m*der(T).

Note: Injecting heat into a pipe with zero mass flow causes temperature rise defined by storing heat in medium's mass.

Parameters (13)

medium

Value: FluidHeatFlow.Media.Medium()

Type: Medium

Description: Medium in the component

m

Value:

Type: Mass (kg)

Description: Mass of medium

T0

Value:

Type: Temperature (K)

Description: Initial temperature of medium

T0fixed

Value: false

Type: Boolean

Description: Initial temperature guess value or fixed

tapT

Value: 1

Type: Real

Description: Defines temperature of heatPort between inlet and outlet temperature

V_flowLaminar

Value:

Type: VolumeFlowRate (m³/s)

Description: Laminar volume flow

dpLaminar

Value:

Type: Pressure (Pa)

Description: Laminar pressure drop

V_flowNominal

Value:

Type: VolumeFlowRate (m³/s)

Description: Nominal volume flow

dpNominal

Value:

Type: Pressure (Pa)

Description: Nominal pressure drop

frictionLoss

Value: 0

Type: Real

Description: Part of friction losses fed to medium

useHeatPort

Value: false

Type: Boolean

Description: = true, if HeatPort is enabled

h_g

Value:

Type: Length (m)

Description: Geodetic height (height difference from flowPort_a to flowPort_b)

g

Value: Modelica.Constants.g_n

Type: Acceleration (m/s²)

Description: Gravitation

Outputs (4)

T

Type: Temperature (K)

Description: Outlet temperature of medium

T_a

Type: Temperature (K)

Description: Temperature at flowPort_a

T_b

Type: Temperature (K)

Description: Temperature at flowPort_b

dT

Type: TemperatureDifference (K)

Description: Temperature increase of coolant in flow direction

Connectors (3)

flowPort_a

Type: FlowPort_a

flowPort_b

Type: FlowPort_b

heatPort

Type: HeatPort_a

Components (1)

medium

Type: Medium

Description: Medium in the component

Used in Examples (11)

DCPM_Cooling

Modelica.Electrical.Machines.Examples.DCMachines

Test example: Cooling of a DCPM motor

SimpleCooling

Modelica.Thermal.FluidHeatFlow.Examples

Simple cooling circuit

ParallelCooling

Modelica.Thermal.FluidHeatFlow.Examples

Cooling circuit with parallel branches

IndirectCooling

Modelica.Thermal.FluidHeatFlow.Examples

Indirect cooling circuit

PumpAndValve

Modelica.Thermal.FluidHeatFlow.Examples

Cooling circuit with pump and valve

PumpDropOut

Modelica.Thermal.FluidHeatFlow.Examples

Cooling circuit with drop out of pump

ParallelPumpDropOut

Modelica.Thermal.FluidHeatFlow.Examples

Cooling circuit with parallel branches and drop out of pump

OneMass

Modelica.Thermal.FluidHeatFlow.Examples

Cooling of one hot mass

TwoMass

Modelica.Thermal.FluidHeatFlow.Examples

Cooling of two hot masses

WaterPump

Modelica.Thermal.FluidHeatFlow.Examples

Water pumping station

TwoTanks

Modelica.Thermal.FluidHeatFlow.Examples

Two connected open tanks