Angle |
Real |
Quantity: Angle Unit: rad Display Unit: deg |
---|
Modelica.Blocks.Examples Demonstrates the usage of a Continuous.LimPID controller |
|
Modelica.ComplexBlocks.Examples Test Complex Transfer Function Block |
|
Modelica.Electrical.Analog.Examples Simple demo to show behaviour of SaturatingInductor component |
|
Modelica.Electrical.Analog.Examples Transformer circuit to show the magnetization facilities |
|
Modelica.Electrical.Machines.Examples.SynchronousInductionMachines Test example: ElectricalExcitedSynchronousInductionMachine starting direct on line |
|
Modelica.Electrical.Machines.Examples.SynchronousInductionMachines Test example: ElectricalExcitedSynchronousInductionMachine as Generator |
|
Modelica.Electrical.PowerConverters.Examples.ACDC.Rectifier1Pulse One pulse rectifier with resistive load and constant firing angle |
|
Modelica.Electrical.PowerConverters.Examples.ACDC.RectifierBridge2Pulse Two pulse Graetz half controlled bridge with resistive load |
|
Modelica.Electrical.PowerConverters.Examples.ACDC.RectifierBridge2Pulse Two pulse Graetz thyristor bridge rectifier with resistive load |
|
Modelica.Electrical.PowerConverters.Examples.ACDC.RectifierBridge2Pulse Two pulse Graetz thyristor bridge rectifier with R-L load |
|
Modelica.Electrical.PowerConverters.Examples.ACDC.RectifierBridge2Pulse Two pulse Graetz thyristor bridge rectifier with R-L load and voltage |
|
Modelica.Electrical.PowerConverters.Examples.ACDC.RectifierCenterTap2Pulse Two pulse thyristor rectifier with center tap and resistive load |
|
Modelica.Electrical.PowerConverters.Examples.ACDC.RectifierCenterTap2Pulse Two pulse thyristor rectifier with center tap and R-L load |
|
Modelica.Electrical.PowerConverters.Examples.ACDC.RectifierCenterTap2Pulse Two pulse thyristor rectifier with center tap and R-L load and voltage |
|
Modelica.Electrical.PowerConverters.Examples.ACDC.RectifierCenterTapmPulse 2*m pulse thyristor rectifier with center tap and resistive load |
|
Modelica.Electrical.PowerConverters.Examples.ACDC.RectifierCenterTapmPulse 2*m pulse thyristor rectifier with center tap and R-L load |
|
Modelica.Electrical.PowerConverters.Examples.ACDC.RectifierCenterTapmPulse 2*m pulse thyristor rectifier with center tap and R-L load and voltage |
|
Modelica.Electrical.PowerConverters.Examples.ACDC.RectifierBridge2mPulse 2*m pulse half controlled rectifier bridge with resistive load |
|
Modelica.Electrical.PowerConverters.Examples.ACDC.RectifierBridge2mPulse 2*m pulse thyristor rectifier bridge with resistive load |
|
Modelica.Electrical.PowerConverters.Examples.ACDC.RectifierBridge2mPulse 2*m pulse thyristor rectifier bridge with R-L load |
|
Modelica.Electrical.PowerConverters.Examples.ACDC.RectifierBridge2mPulse 2*m pulse thyristor rectifier bridge with R-L load and voltage |
|
Modelica.Electrical.PowerConverters.Examples.ACDC.RectifierCenterTap2mPulse 2*m pulse thyristor center tap rectifier with resistive load |
|
Modelica.Electrical.PowerConverters.Examples.ACDC.RectifierCenterTap2mPulse 2*m pulse thyristor rectifier with R-L load |
|
Modelica.Electrical.PowerConverters.Examples.ACDC.RectifierCenterTap2mPulse 2*m pulse thyristor center tap rectifier with R-L load and voltage |
|
Modelica.Electrical.QuasiStationary.SinglePhase.Examples Series circuit with Bode analysis |
|
Modelica.Electrical.QuasiStationary.SinglePhase.Examples Series resonance circuit |
|
Modelica.Electrical.QuasiStationary.SinglePhase.Examples Parallel resonance circuit |
|
Modelica.Electrical.QuasiStationary.Machines.Examples Transformer test bench |
|
Modelica.Magnetic.FundamentalWave.Examples.BasicMachines Starting of permanent magnet synchronous machine with inverter |
|
Modelica.Magnetic.FundamentalWave.Examples.BasicMachines Test example: PermanentMagnetSynchronousInductionMachine fed by current source |
|
Modelica.Magnetic.FundamentalWave.Examples.BasicMachines Test example: PermanentMagnetSynchronousInductionMachine fed by FOC |
|
Modelica.Magnetic.FundamentalWave.Examples.BasicMachines ElectricalExcitedSynchronousInductionMachine starting direct on line |
|
Modelica.Magnetic.FundamentalWave.Examples.BasicMachines Electrical excited multi phase synchronous machine operating as generator |
|
Modelica.Magnetic.FundamentalWave.Examples.BasicMachines Electrical excited synchronous machine operating as generator |
|
Modelica.Magnetic.FundamentalWave.Examples.BasicMachines Starting of synchronous reluctance machine with inverter |
|
Modelica.Magnetic.QuasiStatic.FundamentalWave.Examples.BasicMachines.SynchronousMachines Test example: PermanentMagnetSynchronousMachine fed by current source |
|
Modelica.Magnetic.QuasiStatic.FundamentalWave.Examples.BasicMachines.SynchronousMachines Test example: PermanentMagnetSynchronousMachine, investigating maximum torque per Amps |
|
Modelica.Magnetic.QuasiStatic.FundamentalWave.Examples.BasicMachines.SynchronousMachines Electrical excited synchronous machine operating as generator |
|
Modelica.Magnetic.QuasiStatic.FundamentalWave.Examples.BasicMachines.SynchronousMachines Test example: Synchronous reluctance machine fed by current source |
|
Modelica.Mechanics.MultiBody.Examples.Loops One kinematic loop with four bars (with only revolute joints; 5 non-linear equations) |
|
Modelica.Mechanics.MultiBody.Examples.Loops One kinematic loop with four bars (with UniversalSpherical joint; 1 non-linear equation) |
|
Modelica.Mechanics.MultiBody.Examples.Loops One kinematic loop with four bars (with JointSSP joint; analytic solution of non-linear algebraic loop) |
|
Modelica.Utilities.Examples Demonstrate usage of Examples.readRealParameter/.expression |
Modelica.Blocks.Sources Generate sine signal |
|
Modelica.Blocks.Sources Generate cosine signal |
|
Modelica.Blocks.Sources Generate exponentially damped sine signal |
|
Modelica.ComplexBlocks.Sources Generate a phasor with constant magnitude and constant angular velocity of type Complex |
|
Modelica.ComplexBlocks.Sources Generate a phasor with ramped magnitude and constant angle |
|
Modelica.Electrical.Analog.Basic Electromotoric force (electric/mechanic transformer) |
|
Modelica.Electrical.Analog.Sources Sine voltage source |
|
Modelica.Electrical.Analog.Sources Cosine voltage source |
|
Modelica.Electrical.Analog.Sources Exponentially damped sine voltage source |
|
Modelica.Electrical.Analog.Sources Sine current source |
|
Modelica.Electrical.Analog.Sources Cosine current source |
|
Modelica.Electrical.Analog.Sources Exponentially damped sine current source |
|
Modelica.Electrical.Machines.BasicMachines.Components Partial airgap model |
|
Modelica.Electrical.Machines.Sensors Hall sensor |
|
Modelica.Electrical.Machines.SpacePhasors.Blocks Conversion of multi phase instantaneous values to space phasors |
|
Modelica.Electrical.Machines.SpacePhasors.Blocks Conversion of space phasors to multi phase instantaneous values |
|
Modelica.Electrical.Machines.Interfaces Partial model for all machines |
|
Modelica.Electrical.Machines.Interfaces Shaft and support |
|
Modelica.Electrical.Machines.Utilities Voltage-Frequency-Controller |
|
Modelica.Electrical.MultiPhase.Sources Multiphase sine voltage source |
|
Modelica.Electrical.MultiPhase.Sources Multiphase cosine voltage source |
|
Modelica.Electrical.MultiPhase.Sources Multiphase sine current source |
|
Modelica.Electrical.MultiPhase.Sources Multiphase cosine current source |
|
Modelica.Electrical.PowerConverters.ACDC.Control Generic control of 2*m pulse rectifiers |
|
Modelica.Electrical.PowerConverters.ACDC.Control Control of 2 pulse bridge rectifier |
|
Modelica.Electrical.PowerConverters.ACDC.Control Control of 2*m pulse bridge rectifier |
|
Modelica.Electrical.PowerConverters.ACDC.Control Control of 2*m pulse center tap rectifier |
|
Modelica.Electrical.PowerConverters.DCAC.Control SpaceVector Pulse Width Modulation |
|
Modelica.Electrical.QuasiStationary.SinglePhase.Ideal Ideal transformer |
|
Modelica.Electrical.QuasiStationary.SinglePhase.Sensors Potential sensor |
|
Modelica.Electrical.QuasiStationary.SinglePhase.Sensors Voltage sensor |
|
Modelica.Electrical.QuasiStationary.SinglePhase.Sensors Current sensor |
|
Modelica.Electrical.QuasiStationary.SinglePhase.Sensors Power sensor |
|
Modelica.Electrical.QuasiStationary.SinglePhase.Sensors Sensor to measure current, voltage and power |
|
Modelica.Electrical.QuasiStationary.SinglePhase.Sources Constant AC voltage |
|
Modelica.Electrical.QuasiStationary.SinglePhase.Sources Voltage source with integrated frequency sweep |
|
Modelica.Electrical.QuasiStationary.SinglePhase.Sources Constant AC current |
|
Modelica.Electrical.QuasiStationary.SinglePhase.Sources Current source with integrated frequency sweep |
|
Modelica.Electrical.QuasiStationary.SinglePhase.Interfaces Two pins |
|
Modelica.Electrical.QuasiStationary.SinglePhase.Interfaces Partial voltage / current source |
|
Modelica.Electrical.QuasiStationary.Machines.SpacePhasors.Blocks Conversion: three phase -> space phasor |
|
Modelica.Electrical.QuasiStationary.Machines.SpacePhasors.Blocks Conversion: space phasor -> three phase |
|
Modelica.Electrical.QuasiStationary.MultiPhase.Blocks Creates symmetrical components from signals representing quasi static phasors |
|
Modelica.Electrical.QuasiStationary.MultiPhase.Blocks Creates quasi static phasors from symmetrical components |
|
Modelica.Electrical.QuasiStationary.MultiPhase.Blocks Conversion: m phase -> space phasor |
|
Modelica.Electrical.QuasiStationary.MultiPhase.Blocks Conversion: space phasor -> m phase |
|
Modelica.Electrical.QuasiStationary.MultiPhase.Sensors Potential sensor |
|
Modelica.Electrical.QuasiStationary.MultiPhase.Sensors Voltage sensor |
|
Modelica.Electrical.QuasiStationary.MultiPhase.Sensors Current Sensor |
|
Modelica.Electrical.QuasiStationary.MultiPhase.Sensors Power sensor |
|
Modelica.Electrical.QuasiStationary.MultiPhase.Sensors Multiphase sensor to measure current, voltage and power |
|
Modelica.Electrical.QuasiStationary.MultiPhase.Sources Constant multiphase AC voltage |
|
Modelica.Electrical.QuasiStationary.MultiPhase.Sources Voltage source with integrated frequency sweep |
|
Modelica.Electrical.QuasiStationary.MultiPhase.Sources Constant multiphase AC current |
|
Modelica.Electrical.QuasiStationary.MultiPhase.Sources Current source with integrated frequency sweep |
|
Modelica.Electrical.QuasiStationary.MultiPhase.Interfaces Two plugs with pin-adapter |
|
Modelica.Electrical.QuasiStationary.MultiPhase.Interfaces |
|
Modelica.Electrical.QuasiStationary.MultiPhase.Interfaces Partial voltage / current source |
|
Modelica.Electrical.QuasiStationary.Types Reference angle |
|
SinglePhaseElectroMagneticConverter Modelica.Magnetic.FundamentalWave.Components Single phase electro magnetic converter |
|
MultiPhaseElectroMagneticConverter Modelica.Magnetic.FundamentalWave.Components Multi phase electro magnetic converter |
|
Modelica.Magnetic.FundamentalWave.BasicMachines.Components Symmetric winding model coupling electrical and magnetic domain |
|
Modelica.Magnetic.FundamentalWave.BasicMachines.Components Symmetric winding model coupling electrical and magnetic domain |
|
Modelica.Magnetic.FundamentalWave.BasicMachines.Components Air gap model with rotor saliency |
|
ConstantMagneticPotentialDifference Modelica.Magnetic.FundamentalWave.Sources Source with constant magnetic potential difference |
|
SignalMagneticPotentialDifference Modelica.Magnetic.FundamentalWave.Sources Source of magnetic potential difference with signal input |
|
Modelica.Magnetic.FundamentalWave.Sources Source of constant magnetic flux |
|
Modelica.Magnetic.FundamentalWave.Sources Source of time varying magnetic flux |
|
Modelica.Magnetic.FundamentalWave.Interfaces Two magnetic ports for graphical modeling with additional variables |
|
Modelica.Magnetic.FundamentalWave.Interfaces Two magnetic ports for textual modeling |
|
Modelica.Magnetic.FundamentalWave.Interfaces Partial model for induction machine |
|
Modelica.Magnetic.FundamentalWave.Interfaces Transform instantaneous values to space phasors and select states |
|
Modelica.Magnetic.QuasiStatic.FluxTubes.Shapes.FixedShape (Hollow) cylinder with axial flux; fixed shape; linear or non-linear material characteristics |
|
Modelica.Magnetic.QuasiStatic.FluxTubes.Shapes.FixedShape Hollow cylinder with radial flux; fixed shape; linear or non-linear material characteristics |
|
Modelica.Magnetic.QuasiStatic.FluxTubes.Interfaces Partial component with two magnetic ports p and n for textual programming |
|
Modelica.Magnetic.QuasiStatic.FluxTubes.Interfaces Base class for flux tubes with fixed shape during simulation; linear or non-linear material characteristics |
|
Modelica.Magnetic.QuasiStatic.FluxTubes.Interfaces Partial magnetic voltage or flux source |
|
MultiPhaseElectroMagneticConverter Modelica.Magnetic.QuasiStatic.FundamentalWave.Components Multi phase electro magnetic converter |
|
QuasiStaticAnalogElectroMagneticConverter Modelica.Magnetic.QuasiStatic.FundamentalWave.Components Electro magnetic converter to only (!) quasi static analog, neglecting induced voltage |
|
Modelica.Magnetic.QuasiStatic.FundamentalWave.BasicMachines.InductionMachines Induction machine with squirrel cage |
|
Modelica.Magnetic.QuasiStatic.FundamentalWave.BasicMachines.InductionMachines Induction machine with slip ring rotor |
|
Modelica.Magnetic.QuasiStatic.FundamentalWave.BasicMachines.Components Symmetric winding model coupling electrical and magnetic domain |
|
Modelica.Magnetic.QuasiStatic.FundamentalWave.BasicMachines.Components Quasi static single phase winding neglecting induced voltage |
|
Modelica.Magnetic.QuasiStatic.FundamentalWave.BasicMachines.Components Air gap model with rotor saliency |
|
Modelica.Magnetic.QuasiStatic.FundamentalWave.BasicMachines.Components Permanent magnet model without intrinsic reluctance, represented by magnetic potential difference |
|
Modelica.Magnetic.QuasiStatic.FundamentalWave.BasicMachines.BaseClasses Partial model for quasi static multi phase machines |
|
ConstantMagneticPotentialDifference Modelica.Magnetic.QuasiStatic.FundamentalWave.Sources Source with constant magnetic potential difference |
|
SignalMagneticPotentialDifference Modelica.Magnetic.QuasiStatic.FundamentalWave.Sources Source of magnetic potential difference with signal input |
|
Modelica.Magnetic.QuasiStatic.FundamentalWave.Sources Source of constant magnetic flux |
|
Modelica.Magnetic.QuasiStatic.FundamentalWave.Sources Source of time varying magnetic flux |
|
Modelica.Magnetic.QuasiStatic.FundamentalWave.Sensors Sensor to measure magnetic flux |
|
MagneticPotentialDifferenceSensor Modelica.Magnetic.QuasiStatic.FundamentalWave.Sensors Sensor to measure magnetic potential difference |
|
Modelica.Magnetic.QuasiStatic.FundamentalWave.Sensors Sensor to measure magnetic potential |
|
Modelica.Magnetic.QuasiStatic.FundamentalWave.Interfaces Partial two port for graphical programming with additional variables |
|
Modelica.Magnetic.QuasiStatic.FundamentalWave.Interfaces Elementary partial two port for textual programming |
|
Modelica.Magnetic.QuasiStatic.FundamentalWave.Utilities Voltage-Frequency-Controller |
|
Modelica.Magnetic.QuasiStatic.FundamentalWave.Utilities Current controller |
|
Modelica.Mechanics.MultiBody.Examples.Loops.Utilities Cylinder with rod and crank of a combustion engine |
|
Modelica.Mechanics.MultiBody.Examples.Systems.RobotR3.Components Generate reference angles for fastest kinematic movement |
|
Modelica.Mechanics.MultiBody.Examples.Systems.RobotR3.Components Generate reference angles for fastest kinematic movement |
|
Modelica.Mechanics.MultiBody.Examples.Systems.RobotR3.Components Model of the mechanical part of the r3 robot (without animation) |
|
Modelica.Mechanics.MultiBody.Joints Revolute joint (1 rotational degree-of-freedom, 2 potential states, optional axis flange) |
|
Modelica.Mechanics.MultiBody.Joints Cylindrical joint (2 degrees-of-freedom, 4 potential states) |
|
Modelica.Mechanics.MultiBody.Joints Universal joint (2 degrees-of-freedom, 4 potential states) |
|
Modelica.Mechanics.MultiBody.Joints Planar joint (3 degrees-of-freedom, 6 potential states) |
|
Modelica.Mechanics.MultiBody.Joints Spherical joint (3 constraints and no potential states, or 3 degrees-of-freedom and 3 states) |
|
Modelica.Mechanics.MultiBody.Joints Free motion joint (6 degrees-of-freedom, 12 potential states) |
|
Modelica.Mechanics.MultiBody.Joints Ideal 3-dim. gearbox (arbitrary shaft directions) |
|
Modelica.Mechanics.MultiBody.Joints Joint (no mass, no inertia) that describes an ideal rolling wheel (rolling on the plane z=0) |
|
Modelica.Mechanics.MultiBody.Joints Joint (no mass, no inertia) that describes an ideal rolling wheel set (two ideal rolling wheels connected together by an axis) |
|
Modelica.Mechanics.MultiBody.Joints.Internal Revolute joint where the rotation angle is computed from a length constraint (1 degree-of-freedom, no potential state) |
|
Modelica.Mechanics.MultiBody.Parts Rigid body with mass, inertia tensor and one frame connector (12 potential states) |
|
Modelica.Mechanics.MultiBody.Parts Rigid body with mass, inertia tensor, different shapes for animation, and two frame connectors (12 potential states) |
|
Modelica.Mechanics.MultiBody.Parts Rigid body with box shape. Mass and animation properties are computed from box data and density (12 potential states) |
|
Modelica.Mechanics.MultiBody.Parts Rigid body with cylinder shape. Mass and animation properties are computed from cylinder data and density (12 potential states) |
|
Modelica.Mechanics.MultiBody.Parts Propagate 1-dim. support torque to 3-dim. system (provided world.driveTrainMechanics3D=true) |
|
Modelica.Mechanics.MultiBody.Parts 1D inertia attachable on 3-dim. bodies (3D dynamic effects are taken into account if world.driveTrainMechanics3D=true) |
|
Modelica.Mechanics.MultiBody.Parts.Rotor1D 1D inertia attachable on 3-dim. bodies (3D dynamic effects are taken into account) |
|
Modelica.Mechanics.MultiBody.Parts Ideal rolling wheel on flat surface z=0 (5 positional, 3 velocity degrees of freedom) |
|
Modelica.Mechanics.MultiBody.Parts Ideal rolling wheel set consisting of two ideal rolling wheels connected together by an axis |
|
Modelica.Mechanics.MultiBody.Sensors Measure absolute kinematic quantities of frame connector |
|
Modelica.Mechanics.MultiBody.Sensors Measure relative kinematic quantities between two frame connectors |
|
Modelica.Mechanics.MultiBody.Sensors Measure absolute angles between frame connector and the world frame |
|
Modelica.Mechanics.MultiBody.Sensors Measure relative angles between two frame connectors |
|
Modelica.Mechanics.MultiBody.Visualizers Visualizing a torus |
|
Modelica.Mechanics.Rotational.Examples.Utilities Input/output block of a spring/damper model |
|
Modelica.Mechanics.Rotational.Examples.Utilities Input/output block of a spring model |
|
Modelica.Mechanics.Rotational.Examples.Utilities Linear 1D rotational spring and damper in parallel (phi and w are not used as states) |
|
Modelica.Mechanics.Rotational.Components Flange fixed in housing at a given angle |
|
Modelica.Mechanics.Rotational.Components 1D-rotational component with inertia |
|
Modelica.Mechanics.Rotational.Components 1-dim. rotational rigid component without inertia, where right flange is rotated by a fixed angle with respect to left flange |
|
Modelica.Mechanics.Rotational.Components Linear 1D rotational spring |
|
Modelica.Mechanics.Rotational.Components Linear 1D rotational spring and damper in parallel |
|
Modelica.Mechanics.Rotational.Components Backlash connected in series to linear spring and damper (backlash is modeled with elasticity) |
|
Modelica.Mechanics.Rotational.Components Backlash connected in series to linear spring and damper (backlash is modeled with elasticity; at start of contact the flange torque can jump, contrary to the ElastoBacklash model) |
|
Modelica.Mechanics.Rotational.Components Coulomb friction in bearings |
|
Modelica.Mechanics.Rotational.Components Brake based on Coulomb friction |
|
Modelica.Mechanics.Rotational.Components Ideal gear without inertia |
|
Modelica.Mechanics.Rotational.Components Gear with mesh efficiency and bearing friction (stuck/rolling possible) |
|
Modelica.Mechanics.Rotational.Components Realistic model of a gearbox (based on LossyGear) |
|
Modelica.Mechanics.Rotational.Components Initializes a flange with pre-defined angle, speed and angular acceleration (usually, this is reference data from a control bus) |
|
Modelica.Mechanics.Rotational.Components Definition of relative state variables |
|
Modelica.Mechanics.Rotational.Sensors Ideal sensor to measure the relative angular velocity between two flanges |
|
Modelica.Mechanics.Rotational.Sensors Ideal sensor to measure the relative angular acceleration between two flanges |
|
Modelica.Mechanics.Rotational.Sources Forced movement of a flange according to a reference angle signal |
|
Modelica.Mechanics.Rotational.Sources Forced movement of a flange according to a reference angular velocity signal |
|
Modelica.Mechanics.Rotational.Sources Forced movement of a flange according to an acceleration signal |
|
Modelica.Mechanics.Rotational.Sources Forced movement of a flange according to an angle, speed and angular acceleration signal |
|
Modelica.Mechanics.Rotational.Interfaces Adapter model to utilize conditional support connector |
|
Modelica.Mechanics.Rotational.Interfaces Partial model for the compliant connection of two rotational 1-dim. shaft flanges |
|
PartialCompliantWithRelativeStates Modelica.Mechanics.Rotational.Interfaces Partial model for the compliant connection of two rotational 1-dim. shaft flanges where the relative angle and speed are used as preferred states |
|
PartialElementaryOneFlangeAndSupport2 Modelica.Mechanics.Rotational.Interfaces Partial model for a component with one rotational 1-dim. shaft flange and a support used for textual modeling, i.e., for elementary models |
|
PartialElementaryTwoFlangesAndSupport2 Modelica.Mechanics.Rotational.Interfaces Partial model for a component with two rotational 1-dim. shaft flanges and a support used for textual modeling, i.e., for elementary models |
|
Modelica.Mechanics.Rotational.Interfaces Partial model of a torque acting at the flange (accelerates the flange) |
|
Modelica.Fluid.Machines Centrifugal pump with mechanical connector for the shaft |
|
Modelica.Fluid.Fittings.BaseClasses.Bends.CurvedBend Geometric data for a curved bend |
|
Modelica.Fluid.Fittings.BaseClasses.Bends.EdgedBend Geometric data for a curved bend |
|
Modelica.Fluid.Dissipation.HeatTransfer.HeatExchanger Input record for function kc_flatTube and kc_flatTube_KC |
|
Modelica.Fluid.Dissipation.PressureLoss.StraightPipe Input record for function dp_twoPhaseOverall_DP |
|
Modelica.Fluid.Dissipation.Utilities.Records.PressureLoss Input for several geometries of internal flow |
|
Modelica.Fluid.Dissipation.Utilities.Records.PressureLoss Input for diffuser |
|
Modelica.Fluid.Dissipation.Utilities.Records.PressureLoss Input for bend |
Modelica.SIunits |